If I remember correctly, the correct answer is either:
A. Electrostatic
or
B. Gravitational
Answer:
A drunk driver's car travel 49.13 ft further than a sober driver's car, before it hits the brakes
Explanation:
Distance covered by the car after application of brakes, until it stops can be found by using 3rd equation of motion:
2as = Vf² - Vi²
s = (Vf² - Vi²)/2a
where,
Vf = Final Velocity of Car = 0 mi/h
Vi = Initial Velocity of Car = 50 mi/h
a = deceleration of car
s = distance covered
Vf, Vi and a for both drivers is same as per the question. Therefore, distance covered by both car after application of brakes will also be same.
So, the difference in distance covered occurs before application of brakes during response time. Since, the car is in uniform speed before applying brakes. Therefore, following equation shall be used:
s = vt
FOR SOBER DRIVER:
v = (50 mi/h)(1 h/ 3600 s)(5280 ft/mi) = 73.33 ft/s
t = 0.33 s
s = s₁
Therefore,
s₁ = (73.33 ft/s)(0.33 s)
s₁ = 24.2 ft
FOR DRUNK DRIVER:
v = (50 mi/h)(1 h/ 3600 s)(5280 ft/mi) = 73.33 ft/s
t = 1 s
s = s₂
Therefore,
s₂ = (73.33 ft/s)(1 s)
s₂ = 73.33 ft
Now, the distance traveled by drunk driver's car further than sober driver's car is given by:
ΔS = s₂ - s₁
ΔS = 73.33 ft - 24.2 ft
<u>ΔS = 49.13 ft</u>
Kinetic energy = (1/2) (mass) (speed)²
BUT . . . in order to use this equation just the way it's written,
the speed has to be in meters per second. So we'll have to
make that conversion.
KE = (1/2) · (1,451 kg) · (48 km/hr)² · (1000 m/km)² · (1 hr/3,600 sec)²
= (725.5) · (48 · 1000 · 1 / 3,600)² (kg) · (km·m·hr / hr·km·sec)²
= (725.5) · ( 40/3 )² · ( kg·m² / sec²)
= 128,978 joules (rounded)