Answer:
The Poisson's Ratio of the bar is 0.247
Explanation:
The Poisson's ratio is got by using the formula
Lateral strain / longitudinal strain
Lateral strain = elongation / original width (since we are given the change in width as a result of compession)
Lateral strain = 0.15mm / 40 mm =0.00375
Please note that strain is a dimensionless quantity, hence it has no unit.
The Longitudinal strain is the ratio of the elongation to the original length in the longitudinal direction.
Longitudinal strain = 4.1 mm / 270 mm = 0.015185
Hence, the Poisson's ratio of the bar is 0.00375/0.015185 = 0.247
The Poisson's Ratio of the bar is 0.247
Please note also that this quantity also does not have a dimension
Answer:
B. G = 333 mS, B = j250 mS
Explanation:
impedance of a circuit element is Z = (3 + j4) Ω
The general equation for impedance
Z = (R + jX) Ω
where
R = resistance in ohm
X = reactance
R = 3Ω X = 4Ω
Conductance = 1/R while Susceptance = 1/X
Conductance = 1/3 = 0.333S
= 333 mS
Susceptance = 1/4 = 0.25S
= 250mS
The right option is B. G = 333 mS, B = j250 mS
Answer:
B-as deadly storms that claim lives in th great pines
Explanation:
I hope it helped if it did pls make me brainliest
Answer:
The coefficient of thermal expansion tells us how much a material can expand due to heat.
Explanation:
Thermal expansion occurs when a material is subjected to heat and changes it's shape, area and volume as a result of that heat. How much that material changes is dependent on it's coefficient of thermal expansion.
Different materials have different coefficients of thermal expansion (i.e. It is a material property and differs from one material to the next). It is important to understand how materials behave when heated, especially for engineering applications when a change in dimension might pose a problem or risk (eg. building large structures).
The answer is answered! Explanation: