1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
marin [14]
3 years ago
7

For methyl chloride at 100°C the second and third virial coefficients are: B = −242.5 cm 3 ·mol −1 C = 25,200 cm 6 ·mol −2 Calcu

late the work of mechanically reversible, isothermal compression of 1 mol of methyl chloride from 1 bar to 55 bar at 100°C. Base calculations on the following forms of the virial equation: (a) Z = 1 + B __ V + C ___ V 2 (b) Z = 1 + B′P + C′ P 2 where B′ = B ___ RT and C′= C − B 2 _____ ( RT ) 2 Why don’t both equations give exactly the same result?
Engineering
1 answer:
bogdanovich [222]3 years ago
8 0

Answer:

a)W=12.62 kJ/mol

b)W=12.59 kJ/mol

Explanation:

At T = 100 °C the second and third virial coefficients are

B = -242.5 cm^3 mol^-1

C = 25200 cm^6  mo1^-2

Now according isothermal work of one mole methyl gas is

W=-\int\limits^a_b {P} \, dV

a=v_2\\

b=v_1

from virial equation  

\frac{PV}{RT}=z=1+\frac{B}{V}+\frac{C}{V^2}\\   \\P=RT(1+\frac{B}{V} +\frac{C}{V^2})\frac{1}{V}\\

And  

W=-\int\limits^a_b {RT(1+\frac{B}{V} +\frac{C}{V^2}\frac{1}{V}  } \, dV

a=v_2\\

b=v_1

Now calculate V1 and V2 at given condition

\frac{P1V1}{RT} = 1+\frac{B}{v_1} +\frac{C}{v_1^2}

Substitute given values P_1\\ = 1 x 10^5 , T = 373.15 and given values of coefficients we get  

10^5(v_1)/8.314*373.15=1-242.5/v_1+25200/v_1^2

Solve for V1 by iterative or alternative cubic equation solver we get

v_1=30780 cm^3/mol

Similarly solve for state 2 at P2 = 50 bar we get  

v_1=241.33 cm^3/mol

Now  

W=-\int\limits^a_b {RT(1+\frac{B}{V} +\frac{C}{V^2}\frac{1}{V}  } \, dV

a=241.33

b=30780

After performing integration we get work done on the system is  

W=12.62 kJ/mol

(b) for Z = 1 + B' P +C' P^2 = PV/RT by performing differential we get  

         dV=RT(-1/p^2+0+C')dP

Hence work done on the system is  

W=-\int\limits^a_b {P(RT(-1/p^2+0+C')} \, dP

a=v_2\\

b=v_1

by substituting given limit and P = 1 bar , P2 = 50 bar and T = 373 K we get work  

W=12.59 kJ/mol

The work by differ between a and b because the conversion of constant of virial coefficients are valid only for infinite series  

You might be interested in
1. Band saw lower wheel does not require a guard * true or false 2. Band saw upper guide should be adjusted to within 1/8" of th
Blizzard [7]

Answer:

1. Band saw lower wheel does not require a guard * true or false 2. Band saw upper guide should be adjusted to within 1/8" of the work piece * true or false 3. Find board & linear ft for 10 pieces of 4" x 4" x 8' *

4 0
2 years ago
The most important rating for batteries is the what
kifflom [539]

Answer:

I'm completely sure that the answer is: The most important rating for batteries is the ampere-hour rating. Ampere-hour is the battery discharge rating. It's used as a measure of charge in your device. It indicates how long your device will work without charging.

Explanation:

Hope this helped!

7 0
2 years ago
A _____ satellite system employs many satellites that are spaced so that, from any point on the Earth at any time, at least one
Wittaler [7]

Answer:

d. low earth orbit (LEO)

Explanation:

This type of satellites form a constellation deployed as a series of “necklaces” in such a way that at any time, at least one satellite is visible by a receiver antenna, compensating the movement due to the earth rotation.

Opposite to that, a geostationary satellite is at an altitude that makes it  like a fixed point over the Earth´s equator, rotating synchronously with the Earth, so it is always visible in a given area.

3 0
3 years ago
2. A well of 0.1 m radius is installed in the aquifer of the preceding exercise and is pumped at a rate averaging 80 liter/min.
hodyreva [135]

Question:

The question is not complete. See the complete question and the answer below.

A well that pumps at a constant rate of 0.5m3/s fully penetrates a confined aquifer of 34 m thickness. After a long period of pumping, near steady state conditions, the measured drawdowns at two observation wells 50m and 100m from the pumping well are 0.9 and 0.4 m respectively. (a) Calculate the hydraulic conductivity and transmissivity of the aquifer (b) estimate the radius of influence of the pumping well, and (c) calculate the expected drawdown in the pumping well if the radius of the well is 0.4m.

Answer:

T = 0.11029m²/sec

Radius of influence = 93.304m

expected drawdown = 3.9336m

Explanation:

See the attached file for the explanation.

8 0
3 years ago
You should use the pass technique a fire extinguisher
PilotLPTM [1.2K]

Answer:

Yes

Explanation:

8 0
2 years ago
Other questions:
  • Dr. Thermo, only has one bottle of neon. However, he needs to run two experiments, each requiring its own bottle. Therefore, he
    13·1 answer
  • You have a solid square copper ground support, 2 inch per side X 6 inches tall, and it is loaded axially (long axis)with 1600 po
    11·1 answer
  • Which of the following scenarios describes someone who is a materials engineer?
    13·1 answer
  • In order to avoid slipping in the shop, your footwear should __
    10·2 answers
  • Water is pumped from a lower reservoir to a higher reservoir by a pump that provides 20 kW of shaft power. The free surface of t
    14·1 answer
  • 6
    5·1 answer
  • Heat is applied to a rigid tank containing water initially at 200C, with a quality of 0.25, until the pressure reaches 8 MPa. De
    8·1 answer
  • Plateau Creek carries 5.0 m^3 /s of water with a selenium (Se) concentration of 0.0015 mg/L. A farmer withdraws water at a certa
    12·1 answer
  • Which of the following can not be used to store an electrical charge?
    11·1 answer
  • Aqueous cleaners are ________ parts cleaning agents.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!