Answer:
battery life in year = 9 years and 48 days
Explanation:
given data
Battery Ampere-hours = 1.5
Pulse voltage = 2 V
Pulse width = 1.5 m sec
Pulse time period = 1 sec
Electrode heart resistance = 150 Ω
Current drain on the battery = 1.25 µA
to find out
battery life in years
solution
we get first here duty cycle that is express as
duty cycle =
...............1
duty cycle = 1.5 × 
and applied voltage will be
applied voltage = duty energy × voltage ...........2
applied voltage = 1.5 ×
× 2
applied voltage = 3 mV
so current will be
current =
................3
current = 
current = 20 µA
so net current will be
net current = 20 - 1.25
net current = 18.75 µA
so battery life will be
battery life = 
battery life = 80000 hours
battery life in year = 
battery life in year = 9.13 years
battery life in year = 9 years and 48 days
Answer:
$5.184
Explanation:
The cost can be calculated using the formula: 
Before using this, we require the following conversions:
<em>320 W → kW:</em>
<em>30 Days → Hours:</em>

Using the above stated formula:

Answer:
after 8 stepshddnffuddbnggkbdbkloyr
Answer:
a) 3581.15067 kw
b) 95.4%
Explanation:
<u>Given data:</u>
compressor efficiency = 85%
compressor pressure ratio = 10
Air enters at: flow rate of 5m^3/s , pressure = 100kPa, temperature = 300 K
At turbine inlet : pressure = 950 kPa, temperature = 1400k
Turbine efficiency = 88% , exit pressure of turbine = 100 kPa
A) Develop a full accounting of the exergy increase of the air passing through the gas turbine combustor in kW
attached below is a detailed solution to the given question
Answer:
d. All of the above would require an EIS.
Explanation:
A document prepared with the aim of describing the impacts of suggested operations on the environment is an Environmental Impact Statement (EIS). There was a mistake. An Environmental Impact Statement (EIS) is therefore a report describing the environmental effects resulting from a current action. All of the activities above would have an effect on the environment and therefore must fill an EIS