Answer:
The length is 
Explanation:
From the question we are told that
The frequencies of the two successive harmonics are
, 
The speed of sound in the air is 
Generally the frequency of a given harmonic is mathematically represented as

Here n defines the position of the harmonics
Now since the position of both harmonic is not know but we know that they successive then we can represented them mathematically as

and

So

=> 
=> 
Answer:
0.247 μC
Explanation:
As both sphere will be at the same level at wquilibrium, the direction of the electric force will be on the x axis. As you can see in the picture below, the x component of the tension of the string of any of the spheres should be equal to the electric force of repulsion. And its y component will be equal to the weight of one sphere. We can use trigonometry to find the components of the tensions:



The electric force is given by the expression:

In equilibrium, the distance between the spheres will be equal to 2 times the length of the string times sin(50):

And k is the coulomb constan equal to 9 *10^9 N*m^2/C^2. q1 y q2 is the charge of each particle, in this case, they are equal.


O 0.247 μC
Firstly they have a acceleration downwards due the force downwards due they gravitational field acting on it's mass.
as it falls it gains speed, and as it gains speed the air Resistance which is a upward force actin on the drop increases, eventually the rain drop's upward and downward forces are balanced and hence there is no RESULTANT force therefore no acceleration, so the drops falls in constant speed (terminal verlocity is a better term)
Are you wondering that why is the raindrop still moving given that the forces are balanced? If so according to Newton's 1st law an object will keep moving or Remain at rest until a RESULTANT force acts on it.
I would have to say Texas because, obviously, its on the coast, and because I know for a fact Oklahoma is VERY prone to Tornadoes and I also know Dallas (and surrounding areas) has a few tornadoes a year:)
I hope I helped:)
<span />