Answer:
Step-by-step explanation:
can you show the whole picture please
Answer:
Any number for x will work
Step-by-step explanation:
6x-3=3(2x-1)
expand
6x-3=6x-3
add three to both sides
6x=6x
simplify
x=x
Therefore any number for x will work
Answer:
Quadrilateral ABCD is not a square. The product of slopes of its diagonals is not -1.
Step-by-step explanation:
Point A is (-4,6)
Point B is (-12,-12)
Point C is (6,-18)
Point D is (13,-1)
Given that the diagonals of a square are perpendicular to each other;
We know that the product of slopes of two perpendicular lines is -1.
So, slope(m) of AC × slope(m) of BD should be equal to -1.
Slope of AC = (Change in y-axis) ÷ (Change in x-axis) = (-18 - 6) ÷ (6 - -4) = -24/10 = -2.4
Slope of BD = (Change in y-axis) ÷ (Change in x-axis) = (-1 - -12) ÷ (13 - -12) = 11/25 = 0.44
The product of slope of AC and slope of BD = -2.4 × 0.44 = -1.056
Since the product of slope of AC and slope of BD is not -1 hence AC is not perpendicular to BD thus quadrilateral ABCD is not a square.
Answer:
The answers is n=35
Step-by-step explanation:
Solve for n by simplifying both sides of the equation. Then isolating the variable.
J’espère que ça aide.
Answer:
1. distance = sqrt( (7-7)^2+(2- -8)^2) = 10
2. check out desk (0,0 ) => distance = sqrt( (0- -9)^2+(0-0)^2) = 9
3. last corner ( -3, 4)
4. area = sqrt( (-10- -10)^2+(10-4)^2) x sqrt( (-3- -10)^2+(10-10)^2) = 6x7 =42
5. check desk (0,0), south direction = negative y axis => P_beginning (0,-20), P_end (0,-(20+25)) = (0,-45)
6. A(-2,-1) and B(4,-1) lie in y =-1. AB = sqrt( (-2- 4)^2+(-1- -1)^2) =6
=> area = 3.6x6 =21.6
=> peri = 2x(3.6+6) = 19.2
7. A(-5,4) and B(2,4), AB = sqrt( (-5- 2)^2+(4- -4)^2) = 7 => AB is base
=> p = peri = 7+ 8.3x2 = 23.6
=> area = sqrt[px(p-7)x(p-8.3)x(p-8.3)]
=sqrt[23.6x(23.6-7)x(23.6-8.3)x(23.6-8.3)] = 302.8