Answer:
a. sulfur difluoride SF₂
b. sulfur hexafluoride SF₆
c. sodium dihydrogen phosphate NaH₂PO₄
d. lithium nitride Li₃N
e. chromium(III) carbonate Cr₂(CO₃)₃
f. tin(II) fluoride SnF₂
g. ammonium acetate NH₄(CH₃COO)
h. ammonium hydrogen sulfate NH₄(HSO₄)
i. cobalt(III) nitrate Co(NO₃)₃
j. mercury(I) chloride Hg₂Cl₂
k. potassium chlorate KClO₃
l. sodium hydride NaH
Explanation:
The names give us information about the composition. First, we mention the cation and then the anion. In the formula, we follow the same order. Each part has a charge but the resulting compound is electrically neutral.
Explanation:
Van der Waals interactions occur between any two or more molecules. They are caused by a fluctuation in electron density, as electrons are not actually fixed in a shell, but actually freely moving as a 'cloud of electron density'. This means that sometimes one end of a molecule can become more partially negatively charged as all electrons move to that side, and conversely it can attract the more partially positive end of a molecule (that has little electrons).
Hydrogen bonds only occur between molecules that contain oxygen, nitrogen and fluorine bonded to a hydrogen atom.
Hydrogen bonding is also the strongest intermolecular force there is, but not strong in comparison to ionic and covalent bonds. Therefore, hydrogen bonds are much stronger than Van der Waals forces. Hydrogen bonds only form if oxygen, nitrogen and fluorine are bonded to a hydrogen atom, as they have the greatest electronegativity differences (look at an electronegativity table), and when the overall molecule is polar (have unequal charges). This allows the molecule to be able to attract another molecule from one of the bonded atoms to a hydrogen atom.
Solution..
---------------
Let's calculate the mass of CO₂.
We have (12+(16*2))
= 12+32
=44gmol¯¹..
a. What is the percent by mass of carbon?
Mass of carbon /mass of CO₂ × 100%
12/44 × 100%
=27.3%...
b. What is the percent by mass of oxygen?
Mass of oxygen/mass of CO₂ × 100%
(2×16)/44 × 100%
32/44 × 100%
=72.7%....
To check.. You'll add this two percentage compositions together and see of it gives 100%... If it does then we're good...
27.3%+72.7% = 100%.... Checked..
Hope this helped....?
Molar volume at STP = 22,4 L
1 mole -------------- 22,4 L
x mole -------------- 11,2 L
x = 11,2 / 22,4
x = 0,5 moles of N2
1 mole --------------- 6,02.10²³ molecules
0,5 moles ------------ y molecules
y = 0,5 . 6,02.10²³
y = 3,01.10²³ molecules