Answer : Methanal also known as Formaldehyde
is a chemical Aldehyde which contain ( -CHO) group.
Explanation :
In organic chemistry, a carbonyl group is a functional group which contain a carbon atom double-bonded to an oxygen atom i.e, ( C=O).
If carbonyl group is present in a compound then it can be a carboxylic (RCOOH), aldehyde (RCHO), ketone (RCOR'), ester ((RCOOR') or amide (RCONR'R") group.
Here are some functional groups naming according to the<em> IUPAC</em> rules and image also attached,
Carboxylic acid → (RCOOH) → ( name end in 'OIC ACID' )
Aldehyde → (RCOH) → ( name end in 'AL' )
Ketone → (RCOR') → ( name end in 'ONE' )
Ester → (RCOOR') → ( name end in 'ATE' )
Amide → (RCONR'R") → ( name end in 'AMIDE' )
In an aldehyde, atleast one hydrogen atom must be attached to the carbonyl carbon. For an aldehyde, remove ( -e) from alkane name and add ( -al) at the end of the compound.
Methanal is the IUPAC name for Formaldehyde.
Answer: 
Explanation:

Multiply by t on both sides.


Now divide by I to isolate t.


Answer:
A) SiO2 is the limiting reactant
B) Theoretical yield= 72333.3g
C) % yield =91.5%
Explanation:
SiO2(s) + 2C(s) --------------> Si(s) + 2CO(g)
n(SiO2)= 155000/60 = 2583.33 mols
n(C)= 79000/12= 3291.66 mols
a)SiO2 is the limiting reactant
According to the balanced reaction equation,
60g of SiO2 produced 28g of SiO2
155000g of SiO2 will produce 155000×28/60= 72333.3g
Therefore theoretical yield of Si= 72333.3g
% yield= 66200/72333.3×100/1 =91.5%
Answer:
Which best describes a difference between energy transformations in power plants and dams? Only power plants use fossil fuels to transform energy. Only dams use fission to generate thermal energy. ... Only dams use mechanical energy to produce electricity.
Explanation:
HOPE THIS HELP
PICK ME AS THE BRAINLIEST
Answer:
The nitrile group
Explanation:
The nitrile group contains the C≡N bond. It should be recalled that triple bond is highly electronegative and withdraws electrons from the C-H bond more effectively than the halogen atom.
The higher effectiveness of the C≡N bond at electron withdrawal greatly reduces the electron density of the C-H bond thereby making the hydrogen atom of the bond highly labile