Answer:
In case of low-mass stars,the outer layers of the low mass stars are expelled as the core collapses such that the outer layers form a planetary nebula.
Explanation:
In case of low-mass stars,the outer layers of the low mass stars are expelled as the core collapses such that the outer layers form a planetary nebula. The core remains as a white dwarf and finally become a black dwarf as it cools down. A low mass star consumes its core hydrogen and turns it into helium over its lifetime.
The correct answer should be that Potential energy increases, and kinetic energy increases, since they both increase as the temperature changes.
Answer:
The molarity of urea in this solution is 6.39 M.
Explanation:
Molarity (M) is <em>the number of moles of solute in 1 L of solution</em>; that is

To calculate the molality, we need to know the number of moles of urea and the volume of solution in liters. We assume 100 grams of solution.
Our first step is to calculate the moles of urea in 100 grams of the solution,
using the molar mass a conversion factor. The total moles of 100g of a 37.2 percent by mass solution is
60.06 g/mol ÷ 37.2 g = 0.619 mol
Now we need to calculate the volume of 100 grams of solution, and we use density as a conversion factor.
1.032 g/mL ÷ 100 g = 96.9 mL
This solution contains 0.619 moles of urea in 96.9 mL of solution. To express it in molarity, we need to calculate the moles present in 1000 mL (1 L) of the solution.
0.619 mol/96.9 mL × 1000 mL= 6.39 M
Therefore, the molarity of the solution is 6.39 M.
If you'd like the full working, here it is:
I calculated this by using the formula triangle.
Mass
Number Formula
Of moles Mass
To calculate the number if moles in a substance, you need to divide the Mass by the Formula mass. You get the formula mass by adding the atomic masses of the elements in the compound together. In this situation, H2O, it would be two hydrogen molecules plus one oxygen molecule which is 2 + 16. This is because the atomic mass of Hydrogen is 1 and the atomic mass of Oxygen is 16.
Now that we have the Formula mass we can go ahead and do the calculation since we already have the Mass. You do as follows:
Mass divided by Formula mass which is in this case - 25 divided by 18
By doing this calculation you will get the answer which is 1.38 moles which can be rounded to 1.4
Hope this helps :)
The answer is statement #3.