<span>If one of the impurities in diesel fuel has the formula c2h6s, then the products that will form would be carbon dioxide, water and sulfur dioxide. The balanced chemical reaction would be as follows:
</span>C2H6S(l)<span> + 9/2O2(g) = 2CO2(g) + 3H2O(v) + SO2(g)
</span>
Hope this answers the question.
Answer:
Explanation:
We want the energy required for the transition:
CO 2
(
s
)
+
Δ
→
C
O
2
(
g
)
Explanation:
We assume that the temperature of the gas and the solid are EQUAL.
And thus we simply have to work out the product:
2
×
10^
3
⋅
g
×
196.3
⋅
J
⋅
g
−
1 to get an answer in Joules as required.
What would be the energy change for the reverse transition:
C
O
2
(
g
)
+
→
C
O
2
(
s
)
?
Answer:
Group of highly-reactive chemical elements. The alkali metals are a group (column) in the periodic table consisting of the chemical elements lithium (Li), sodium (Na), potassium (K), rubidium (Rb), caesium (Cs), and francium (Fr).
Although the data for the experiment was not provided, we can offer a generalized answer in that when performing an experiment to achieve absolute zero temperatures, the value will never match the exact value.
<h3 /><h3>What is absolute zero?</h3>
Absolute zero is the lower limit of temperature. It is considered the coldest possible temperature that can exist. However, any attempt to reach this temperature in a controlled environment has failed, <u>scientists do not think it is possible to recreate this </u><u>temperature</u><u>. </u>
Therefore, we can confirm that the value of the absolute zero experiments did not match the accepted value. If the hypothesis was that it would be difficult or impossible to achieve, then the data would support the hypothesis, otherwise, it would fail to do so.
In summary, absolute zero is a temperature that cannot be recreated in a lab, so the value in this experiment does not match the accepted value and there is <u>no further exploration </u>to be done on this matter.
To learn more about absolute zero visit:
brainly.com/question/79835?referrer=searchResults
Answer:
The freezing point of the solution is - 4.39 °C.
Explanation:
We can solve this problem using the relation:
<em>ΔTf = (Kf)(m),</em>
where, ΔTf is the depression in the freezing point.
Kf is the molal freezing point depression constant of water = -1.86 °C/m,
density of water = 1 g/mL.
<em>So, the mass of 575 mL is 575 g = 0.575 kg.</em>
m is the molality of the solution (m = moles of solute / kg of solvent = (465 g / 342.3 g/mol)/(0.575 kg) = 2.36 m.
<em>∴ ΔTf = (Kf)(m</em>) = (-1.86 °C/m)(2.36 m) = <em>- 4.39 °C.</em>
<em>∵ The freezing point if water is 0.0 °C and it is depressed by - 4.39 °C.</em>
<em>∴ The freezing point of the solution is - 4.39 °C.</em>