How does the law of conservation of mass apply to this reaction: C2H4 + O2 → H2O + CO2?
Answer:If each side of the equation has the same number of atoms of a given element, that element is balanced. If all elements are balanced, the equation is balanced. - online resource
Explanation: if not im sorry
The molecular weight of hemoglobin can be calculated using osmotic pressure
Osmotic pressure is a colligative property and it depends on molarity as
πV = nRT
where
π = osmotic pressure
V = volume = 1mL = 0.001 L
n = moles
R = gas constant = 0.0821 L atm / mol K
T = temperature = 25°C = 25 + 273 K = 298 K
Putting values we will get value of moles
we know that
Therefore
Answer:
Explanation:
None of the statement is true for both chemical and nuclear reactions. In chemical reactions, mass is always conserved and the type of atoms are also conserved.
Answer:
Option a. 0.5 m/s
Explanation:
This graph shows a straight line, where "Y" axis would be "Position" and "X" graph would be "Time". The ecuation that would describe this straight line is Y= aX + 1 , where "a" is the slope or inclination for this graph, and would give us the speed of the object
How do we find the slope (and hence, the speed)?: if you notice this graph, you will check that:
-When X (Time) is zero, Y (Position) is 1
-When X (Time) is 2, Y (Position) is 2
With these 4 points, you can calculate the slope (which will call "m") for this graph with:
m = (Y2-Y1)/(X2-X1) so: Y2=2, Y1=1, X2=2, X1=0
Which gives us: m=1/2 (0.5), the slope or speed of the object: 0.5 m/s