Answer:
20 Hz, 20000 Hz
0.0166 m, 16.6 m
Explanation:
The minimum frequency that a human ear can hear is 20 Hz
The maximum frequency that a human ear can hear is 20000 Hz.
v = Velocity of sound = 332 m/s
Wavelength is given by

The longest wavelength that can be heard by the human ear is 16.6 m

The shortest wavelength that can be heard by the human ear is 0.0166 m.
Hi there!
II. Linear momentum of the system is zero.
This is an example of a RECOIL collision. With the Law of Conservation of Momentum, momentum remains constant before and after the collision.
Thus, the total momentum would also be equivalent to zero after the collision.
Answer:
I = (1.80 × 10⁻¹⁰) A
Explanation:
From Biot Savart's law, the magnetic field formula is given as
B = (μ₀I)/(2πr)
B = magnetic field = (1.0 × 10⁻¹⁵) T
μ₀ = magnetic constant = (4π × 10⁻⁷) H/m
r = 3.6 cm = 0.036 m
(1.0 × 10⁻¹⁵) = (4π × 10⁻⁷ × I)/(2π × 0.036)
4π × 10⁻⁷ × I = 1.0 × 10⁻¹⁵ × 2π × 0.036
I = (1.80 × 10⁻¹⁰) A
Hope this Helps!!!
Explanation:
<em>The height of the pendulum is measured from the lowest point it reaches (point 3). </em>
At 1, the kinetic energy of the pendulum is zero (because it is not moving), and it has maximum potential energy.
At 2, the pendulum has both kinetic and potential energy, and how much of each it has depends on its height—smaller the height greater the kinetic energy and lower the potential energy.
At 3, the height is zero; therefore, the pendulum has no potential energy, and has maximum kinetic energy.
At 4, the pendulum again gains potential energy as it climbs back up, Again how much of each forms of energy it has depends on its height.
At 5, the maximum height is reached again; therefore, the pendulum has maximum potential energy and no kinetic energy.
Hope this helps :)
Answer:
50 Mph.
Explanation:
According to the National Severe Storms Laboratory, winds can really begin to cause damage when they reach <em><u>50 mph</u></em>. But here’s what happens before and after they reach that threshold, according to the Beaufort Wind Scale (showing estimated wind speeds): - at 19 to 24 mph, smaller trees begin to sway.