Explanation:
Given that,
Mass of the car, m₁ = 1250 kg
Initial speed of the car, u₁ = 7.39 m/s
Mass of the truck, m₂ = 5380 kg
It is stationary, u₂ = 0
Final speed of the truck, v₂ = 2.3 m/s
Let v₁ is the final velocity of the car. Using the conservation of momentum as :



So, the final velocity of the car is 2.5 m/s but in opposite direction. Hence, this is the required solution.
That's called the wave's "wavelength" .
Potential energy is mass * gravity * height. (m*g*h).
350 = 17*9.8*h <--350 is its energy, 17kg is its mass, and 9.8 is gravity's acceleration on the object. We now just need to solve for h.
h = 350/(17 * 9.8) = 2.1 meters, which, when rounded to the nearest whole meter, is 2 meters.
The shelf is 2 meters high.
Answer:
(a) 1.85 m/s
(b) 4.1 m/s
Explanation:
Data
- initial bullet velocity, Vbi = 837 m/s
- wooden block mass, Mw = 820 g
- initial wooden block velocity, Vwi = 0 m/s
- final bullet velocity, Vbf = 467 m/s
(a) From the conservation of momentum:
Mb*Vbi + Mw*Vwi = Mb*Vbf + Mw*Vwf
Mb*(Vbi - Vbf)/Mw = Vwf
4.1*(837 - 467)/820 = Vwf
Vwf = 1.85 m/s
(b) The speed of the center of mass speed is calculated as follows:
V = Mb/(Mb + Mw) * Vbi
V = 4.1/(4.1 + 820) * 837
V = 4.1 m/s
Answer:
there are go fella hope u understood