1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
yarga [219]
3 years ago
10

A 0.29 kg particle moves in an xy plane according to x(t) = - 19 + 1 t - 3 t3 and y(t) = 20 + 7 t - 9 t2, with x and y in meters

and t in seconds. At t = 1.1 s, what are (a) the magnitude and (b) the angle (within (-180°, 180°] interval relative to the positive direction of the x axis) of the net force on the particle, and (c) what is the angle of the particle's direction of travel?
Physics
1 answer:
Artist 52 [7]3 years ago
7 0

Answer:

Part a)

F = 7.76 N

Part b)

\theta = -137.7 degree

Part c)

\theta = -127.7 degree

Explanation:

As we know that acceleration is rate of change in velocity of the object

So here we know that

x = -19 + t - 3t^3

y = 20 + 7t - 9t^2

Part a)

differentiate x and y two times with respect to time to find the acceleration

a_x = \frac{d^2}{dt^2}(-19 + t - 3t^3)

a_x = \frac{d}{dt}(0 +1 - 9t^2)

a_x = -18t

a_y = \frac{d^2}{dt^2}(20 + 7t - 9t^2)

a_y = \frac{d}{dt}(0 +7 - 18t)

a_y = -18

Now the acceleration of the object is given as

\vec a = (-18t)\hat i + (-18)\hat j

at t= 1.1 s we have

\vec a = -19.8 \hat i - 18 \hat j

now the net force of the object is given as

\vec F = m\vec a

\vec F = (0.29 kg)(-19.8 \hat i - 18 \hat j)

\vec F = -5.74 \hat i - 5.22 \hat j

now magnitude of the force will be

F = \sqrt{5.74^2 + 5.22^2} = 7.76 N

Part b)

Direction of the force is given as

tan\theta = \frac{F_y}{F_x}

tan\theta = \frac{-5.22}{-5.74}

\theta = -137.7 degree

Part c)

For velocity of the particle we have

v_x = \frac{dx}[dt}

v_x = (0 +1 - 9t^2)

v_y = \frac{dy}{dt}

v_y = (0 +7 - 18t)

now at t = 1.1 s

\vec v = -9.89\hat i - 12.8 \hat j

now the direction of the velocity is given as

\theta = tan^{-1}(\frac{v_y}{v_x})

\theta = tan^{-1}(\frac{-12.8}{-9.89})

\theta = -127.7 degree

You might be interested in
A motorcycle has a constant acceleration of 3.49 m/s2. Both the velocity and acceleration of the motorcycle point in the same di
Vilka [71]

Answer:

(a)2.865 s

(b)2.865 s

Explanation:

We are given that

Acceleration,a=3.49 m/s^2

a.Initial speed,u=29 m/s

Final speed,v=39 m/s

We know that

t=\frac{v-u}{a}

Using the formula

t=\frac{39-29}{3.49}=2.865 s

b.Initial speed,u=59 m/s

Final speed,v=69 m/s

Again using the formula

t=\frac{69-59}{3.49}=2.865 s

7 0
3 years ago
Give the 7 color harmonies​
notsponge [240]

Answer:

Complementary colors.

Split complementary colors.

Analogous colors.

Triadic harmonies.

Tetradic harmonies.

Monochromatic harmonies.

Explanation:

7 0
3 years ago
Read 2 more answers
Consider a coin which is tossed straight up into the air. After it is released it moves upward, reaches its highest point and fa
avanturin [10]

Answer:

GRAVITATIONAL FORCE

Explanation:

We may have noticed that a body thrown upward in air falls back down again after attaining a particular height. The object was able to fall down back due to the effect of gravity acting on it. If there are no force of gravity acting on the body, the body will not fall back but rather disappears into the thin air.

A coin tossed upward in the air which falls back down when released is therefore under the influence of gravity i.e GRAVITATIONAL FORCE while it moves upward after it is released

3 0
3 years ago
Two ships of equal mass are 110 m apart. What is the acceleration of either ship due to the gravitational attraction of the othe
dusya [7]

Answer:

Acceleration of the ship, a=2.14\times 10^{-7}\ m/s^2

Explanation:

It is given that,

Mass of both ships, m=39000\ metric\ tons=39\times 10^6\ kg

Distance between two ships, d = 110 m

The gravitational force between two ships is given by :

F=G\dfrac{m^2}{d^2}

F=6.67\times 10^{-11}\ Nm^2/kg^2\times \dfrac{(39\times 10^6\ kg)^2}{(110\ m)^2}

F = 8.38 N

Let a is the acceleration. Now, using second law of motion as :

a=\dfrac{F}{m}

a=\dfrac{8.38\ N}{39\times 10^6\ kg}

a=2.14\times 10^{-7}\ m/s^2

So, the acceleration of either ship due to the gravitational attraction of the other is 2.14\times 10^{-7}\ m/s^2. Hence, this is the required solution.

7 0
3 years ago
A car moving at 30 m/s slows uniformly to a speed of 10 m/s in a time of 5 s. Determine 1. The acceleration of the car. 2. The d
ValentinkaMS [17]

Answer:

Explanation:

Initial velocity , u = 30 m/s

final velocity , v = 10 m/s

time , t = 5 seconds

1. Acceleration = v - u / t

= 10 - 30 / 5

= -20 / 5

= <u><em>- 4 m/s</em></u>

8 0
4 years ago
Other questions:
  • Who first used the zodiac constellations? Will Mark Brainliest!!!
    7·1 answer
  • A uniformly charged ring of radius 10.0 cm has a total charge of 71.0 μC. Find the electric field on the axis of the ring at the
    11·1 answer
  • Scientists are investigating how well different microphones capture and record sounds. They use tools that show how loud the hig
    5·1 answer
  • I need to know everything about mars. I need to do a full 3 page essay. please help!
    9·1 answer
  • Josh rolled a bowling ball down a lane in 2.5 seconds. The ball travelled at a constant acceleration of 1.8 m/s/s down the lane
    6·1 answer
  • The relative density of oak wood is 0.64 .find the density in the cgs system
    5·1 answer
  • A total of 2.0x 1013 electrons pass a given point in a wire in 15s. what is the current in the wire
    11·1 answer
  • What are some symptoms of depression?name three
    15·2 answers
  • A 250 g air-track glider is attached to a spring with springconstant 4.0 N/m. Th damping constant due to air resistance is0.015
    5·1 answer
  • "A simple heat engine works by extracting heat from the hot reservoir, which is then converted into mechanical work, then unconv
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!