You can do it I believe in you
Answer:
a) F = 4.9 10⁴ N, b) F₁ = 122.5 N
Explanation:
To solve this problem we use that the pressure is transmitted throughout the entire fluid, being the same for the same height
1) pressure is defined by the relation
P = F / A
to lift the weight of the truck the force of the piston must be equal to the weight of the truck
∑F = 0
F-W = 0
F = W = mg
F = 5000 9.8
F = 4.9 10⁴ N
the area of the pisto is
A = pi r²
A = pi d² / 4
A = pi 1 ^ 2/4
A = 0.7854 m²
pressure is
P = 4.9 104 / 0.7854
P = 3.85 104 Pa
2) Let's find a point with the same height on the two pistons, the pressure is the same
where subscript 1 is for the small piston and subscript 2 is for the large piston
F₁ = 
the force applied must be equal to the weight of the truck
F₁ =
F₁ = (0.05 / 1) ² 5000 9.8
F₁ = 122.5 N
I'm sorry but I don't really understand the question. What is the quest actually asking???
The thermal energy that is generated due to friction is 344J.
<h3>What is the thermal energy?</h3>
Now we know that the total mechanical energy in the system is constant. The loss in energy is given by the loss in energy.
Thus, the kinetic energy is given as;
KE = 0.5 * mv^2 =0.5 * 15.0-kg * (1.10 m/s)^2 = 9.1 J
PE = mgh = 15.0-kg * 9.8 m/s^2 * 2.40 m = 352.8 J
The thermal energy is; 352.8 J - 9.1 J = 344J
Learn more about thermal energy due to friction:brainly.com/question/7207509
#SPJ1
Answer:
Electric current is defined as the rate of flow of electric charge in a circuit from point one point to another. This is carried by electrically charged particles within the circuit. Current is represented by the symbol I and its unit measured in Amperes. It is therefore related to the voltage and resistance of the circuit. If the current in the circuit reduces, the rate at which the charge and current on the capacitor reduces also proportionally in an exponential manner.
Explanation:
Since a decrease in the flow of current in the circuit is observed, the implication for the rate at which the charge and voltage on the capacitor is also an exponential decrease in the rate of flow with time. This is because the electric current is directly proportional to the electric charge and the time.