Answer:
if your glasses are polarized, you can see the fish in the water. also im pretty sure its d
Explanation:
A.)
False
<u>
</u><u>T</u>here reason why it's false is because Nitrogen is not responsible for clouds and precipitation. The real answer is that Water (Ocean / Other) is responsible for clouds and precipitation.
Good Day / Night :D
you can check attachment for answer.
kind regards
Answer:
35.14°C
Explanation:
The equation for linear thermal expansion is , which means that a bar of length with a thermal expansion coefficient under a temperature variation will experiment a length variation .
We have then = 0.481 foot, = 1671 feet and = 0.000013 per centigrade degree (this is just the linear thermal expansion of steel that you must find in a table), which means from the equation for linear thermal expansion that we have a = 22.14°. As said before, these degrees are centigrades (Celsius or Kelvin, it does not matter since it is only a variation), and the foot units cancel on the equation, showing no further conversion was needed.
Since our temperature on a cool spring day was 13.0°C, our new temperature must be = 35.14°C
According to the <u>Third Kepler’s Law of Planetary motion</u> “<em>The square of the orbital period of a planet is proportional to the cube of the semi-major axis (size) of its orbit”.</em>
In other words, this law states a relation between the orbital period of a body (moon, planet, satellite) orbiting a greater body in space with the size of its orbit.
This Law is originally expressed as follows:
<h2>
(1)
</h2>
Where;
is the Gravitational Constant and its value is
is the mass of Jupiter
is the semimajor axis of the orbit Io describes around Jupiter (assuming it is a circular orbit, the semimajor axis is equal to the radius of the orbit)
If we want to find the period, we have to express equation (1) as written below and substitute all the values:
<h2>
(2)
</h2>
Then:
<h2>
(3)
</h2>
Which is the same as:
<h2>
</h2>
Therefore, the answer is:
The orbital period of Io is 42.482 h