The central force acting on the electron as it revolves in a circular orbit is
.
The given parameters;
- <em>speed of electron, v = 2.2 x 10⁶ m/s</em>
- <em>radius of the circle, r = 4.63 x 10⁻¹¹ m</em>
<em />
The central force acting on the electron as it revolves in a circular orbit is calculated as follows;

where;
is mass of electron = 9.11 x 10⁻³¹ kg

Thus, the central force acting on the electron as it revolves in a circular orbit is
.
Learn more about centripetal force here:brainly.com/question/20905151
Answer:
30 Watts
Explanation:
Power = Work/Time
Work = Force*Distance
Power = Force * Distance / Time
Power = 15 N * 20 meters / 10 sec
Power = 30 Watts
Answer:550N
Explanation:
mass=1100kg
Acceleration=0.5m/s^2
Force=mass x acceleration
Force=1100 x 0.5
Force=550N
Wouldn’t it be 1. resistance is high compared to the voltage and with less resistance, higher current
Answer:
The weight of the body, W = 793.8 m/s²
Explanation:
Given,
The volume of the body, v = 45,000 cm³
The density of the body, ρ = 1.8 g/cm³
The mass of the body is given by the formula,
m = ρ x v
= 1.8 g/cm³ x 45,000 cm³
= 81,000 g
Hence, the mass of the body is m = 81 kg
The weight of the body,
W = m x g
= 81 kg x 9.8 m/s²
= 793.8 m/s²
Hence, the weight of the body, W = 793.8 m/s²