Mechanical advantage is defined as the ratio of output load to the input load. The mechanical advantage of the machine will be 0.1.
<h3>What is
mechanical advantage?</h3>
Mechanical advantage is a measure of the ratio of output force to input force in a system,
It is used to obtain the efficiency of forces in levers and pulleys. It is an effective way of amplifying the force in simple machines like levers.
The theoretical mechanical advantage is defined as the ratio of the force responsible for the useful work in the system to the applied force.
Given
applied force = 250 N
Output force = 25
Mechanical advantage = work output / work input



Hence the mechanical advantage of the machine will be 0.1
To learn more about the mechanical advantage refer to the link;
brainly.com/question/7638820
Answer:
Less than Mercury's
Explanation:
According to third Kepler's law, the square of the planet's orbital period is proportional to the cube of the average orbital radius of the planet's orbit. The constant of proportionality depends only on the mass of the star, recall that 51 Peg has the same mass as the Sun. Since the orbital period of this planet is less than Mercury's, its average orbital radius is less than Mercury's.
<span>An Object 4 Cm Tall Is Placed 12 Cm From A Divergi... | Chegg.com</span>
1.Use the balance to find the mass of the object. Record the value on the "Density Data Chart."
2.Pour water into a graduated cylinder up to an easily-read value, such as 50 milliliters and record the number.
3.Drop the object into the cylinder and record the new value in millimeters.
4.The difference between the two numbers is the object's volume. Remember that 1 milliliter is equal to 1 cubic centimeter. Record the volume on the data chart.
5.Compute the density of the object by dividing the mass value by the volume value. Record the density on the data chart.