<span>Assume: neglect of the collar dimensions.
Ď_h=(P*r)/t=(5*125)/8=78.125 MPa ,Ď_a=Ď_h/2=39 MPa
τ=(S*Q)/(I*b)=(40*〖10〗^3*π(〖0.125〗^2-〖0.117〗^2 )*121*〖10〗^(-3))/(π/2 (〖0.125〗^4-〖0.117〗^4 )*8*〖10〗^(-3) )=41.277 MPa
@ Point K:
Ď_z=(+M*c)/I=(40*0.6*121*〖10〗^(-3))/(8.914*〖10〗^(-5) )=32.6 MPa
Using Mohr Circle:
Ď_max=(Ď_h+Ď_a)/2+âš(Ď„^2+((Ď_h-Ď_a)/2)^2 )
Ď_max=104.2 MPa, Ď„_max=45.62 MPa</span>
Answer:
B. the light will reach the front of the rocket at the same instant that it reaches the back of the rocket.
Explanation:
To an observer at rest in the rocket who can't see either sides of the rocket, the speed of the light is constant which means the distance to the front or the back is same and would appear to reach the rocket at the same time.
Although from the point of view of the person on the earth, the front of the rocket is travelling in opposite direction of the light while the back of the rocket is moving closer to the light. This means that the distance travelled by the light going forward will be longer going backwards. And since the speed of light is constant in both directions, the light will reach the back of the rocket before it reaches the front for the observer on the earth.
Answer:
A = 2,8333 s
Explanation:
El periodo es definido como el tiene que toma de dar una oscilación.
En este caso realiza varias osicilacion por lo cual debemos encontrar el promedio del perdono.
T = t/n
calculemos
A = 34,0/ 12,0
A = 2,8333 s
Answer:
(i) false
(ii) true
(iii) true
(iv) false
Explanation:
(i) The ratio of Cp and Cv is not constant for all the gases. It is because the value of cp and Cv is different for monoatomic, diatomic and polyatomic gases.
So, this is false.
(ii) For monoatomic gas
Cp = 5R/2, Cv = 3R/2
So, thier ratio
Cp / Cv = 5 / 3 = 1.67
This statement is true.
(iii) for diatomic gases
Cp = 7R/2, Cv = 5R/2
Cp / Cv = 7 / 5 = 1.4
This statement is true.
(iv) It is false.