Answer:
Rate at which current flows is measured in amperes
Explanation:
The rate of flow of electrons constitutes the current. The electrons flow from lower electric potential to higher electric potential. When there is no potential difference then no electron will flow. The direction of the current and the electron are in opposite direction.
The direction of electron from the negative terminal to the positive terminal. The direction of current is from the positive terminal to the negative terminal.The current is measured in ampere.
The expression for current and the charge is as;
Here, q is the charge, t is the time taken and I is the current.
According to the given problem, Jodi made a list about electric current to help her study for a test. He described that electrons move from areas of low to high electric potential, voltage causes current to flow and movement of electrons is continuous in a current.
But he did error. It should be "rate at which charges flow" instead of rate at which current flow.
Therefore, the option (4) is correct.
Hello, I hope this helps :)
So the equation to figure these kinds of questions is F=MA
F refers to force, which in this situation F would be 2.4
M refers to mass, mass would be 0.94
A refers to acceleration, which we are trying to figure out
So if we put in the information we know into the equation, it is now 2.4=0.94*A
So with that equation we can figure that 2.4 divided by 0.94 equals A
So 2.4/0.94= 2.553191489362 :'D
Don't worry, the rounded and correct answer is 2.6
Have a nice day =)
Answer:
D. Hypnosis can make the subjects talk, but they talk only about their childhoods.
Explanation:
Answer:
1.08 s
Explanation:
From the question given above, the following data were obtained:
Height (h) reached = 1.45 m
Time of flight (T) =?
Next, we shall determine the time taken for the kangaroo to return from the height of 1.45 m. This can be obtained as follow:
Height (h) = 1.45 m
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) =?
h = ½gt²
1.45 = ½ × 9.8 × t²
1.45 = 4.9 × t²
Divide both side by 4.9
t² = 1.45/4.9
Take the square root of both side
t = √(1.45/4.9)
t = 0.54 s
Note: the time taken to fall from the height(1.45m) is the same as the time taken for the kangaroo to get to the height(1.45 m).
Finally, we shall determine the total time spent by the kangaroo before returning to the earth. This can be obtained as follow:
Time (t) taken to reach the height = 0.54 s
Time of flight (T) =?
T = 2t
T = 2 × 0.54
T = 1.08 s
Therefore, it will take the kangaroo 1.08 s to return to the earth.