It depends on how you want to solve it you can solve it in many different meathods:$
Refer to the figure below.
R = resistance.
Case 1:
The voltage source is V₁ and the current is 10 mA. Therefore
V₁ = (10 mA)R
Case 2:
The voltage source is V₂ and the current is 8 mA. Therefore
V₂ = (8 mA)R
Case 3:
The voltage across the resistance is V₁ - V₂. Therefore the current I is given by
V₁ - V₂ = IR
10R - 8R = (I mA)R
2 = I
The current is 2 mA.
Answer: 2 mA
Answer:
The RMS voltage across the resistor = 28 V
Explanation:
Capacitor: A capacitor is an electrical device that has the ability to store electrical charges in an electrical circuit. It is expressed in Farad (F)
Resistor: A resistor is an electrical device that oppose the flow of electric current in a circuit. It is expressed in ohms (Ω)
RMS Voltage : RMS voltage value of an alternating voltage is defined as that value of steady voltage which would dissipate heat at the same rate in a given resistance
Since the it is a series circuit, the total voltage is divided across the resistance and the capacitor.
Vt = V₁ + V₂...........................Equation 1
Where Vt = total Rms voltage = 120 V , V₁ = Rms voltage across the Capacitor = 92 V, V₂ = Rms voltage across the resistor.
Making V₂ the subject of the equation in equation 1 above,
V₂ = Vt - V₁ = 120 - 92
V₂ = 28 V.
The RMS voltage across the resistor = 28 V
That was Tycho Brahe, and I thought it was actually more years than that.