Aluminum, and magnesium are metals. For metals, reactivity decreases as you go from left to right across the periodic table. Atomic number of Al is 13 and of Mg is 12. Hence the least reactive of these two is therefore aluminum.
Magnesium is "HIGHLY FLAMMABLE" carefully take a small piece and hit it with a torch. If its Magnesium it will "Caution, very, quickly burn.
Aluminum will not react to simple flame, it will only melt with enough direct heat.
Magnesium
==========
Atomic Number: 12
Atomic Symbol: Mg
Atomic Weight: 24.305
Electron Configuration: 2-8-2
Aluminum
========
Atomic Number: 13
Atomic Symbol: Al
Atomic Weight: 26.9815
Electron Configuration: 2-8-3
Hope this helps some. Any questions please feel free to ask. Thank you
Answer: The yellow layer is definitely older than the red layer
Explanation: According to Nicolaus Steno's law of superposition and original horizontality. Older rocks underlie younger rocks.
Sedimentary rocks are usually deposited in horizontal layers in which each stratigraphic layer is laid down before another can be deposited upon it.
The red layer, in addition to being older, is also likely to have undergone intense oxidation due to earlier exposure.
The drag force acting on the rocket is 80N.
<h3>Give an explanation of drag force?</h3>
The divergence in velocity between the fluid and the item, also known as drag, exerts a force on it. Between the liquid and the solid object, there should be motion. Drag is absent in the absence of motion.
The air molecules are more compressed (pushed together) on the surfaces that are facing the front while being more dispersed (spread out) on the surfaces facing the back. Turbulent flow, which occurs when air layers split from the surface and start to swirl, is what causes this.
The drag force acting on the rocket F = ma
Given,
m = 4kg, a = 20ftm/s²
Substituting m and a values in the above formula,
The drag force acting on the rocket F = 4×20
The drag force acting on the rocket F = 80N.
To know more about drag force visit:
brainly.com/question/15144984
#SPJ4