Answer:
Speed of the boat, v = 4.31 m/s
Explanation:
Given that,
Height of the bridge, h = 32 m
The model boat is 11 m from the point of impact when the key was released, d = 11 m
Firstly, we will find the time needed for the boat to get in this position using second equation of motion as :

Here, u = 0 and a = g


t = 2.55 seconds
Let v is the speed of the boat. It can be calculated as :


v = 4.31 m/s
So, the speed of the boat is 4.31 m/s. Hence, this is the required solution.
Nope.
Energy is directly proportional to frequency. and when you calculate energy, you multiply frequency with a constant number called "Planck's Constant"
E = hf
Hope this helps!
Answer:
Straight line in the direction of the tangential velocity the ball had at the moment the string broke
Explanation:
After the string breaks, the ball now disconnected from the centripetal force that was exerted via the string, continues its travel in a straight line in the direction of the tangential velocity it had at the moment the string broke.
Answer:
With the help of formula.
Explanation:
We can calculate the electric potential of any point through the formula of electric potential which is given below.
Electric potential = Coulomb constant x charge/ distance of separation.
Symbolically it can be written as, V = k q/ r where
V = electric potential
k = Coulomb constant
q = charge
r = distance of separation
If we have all these data, we can simply put the data in the formula and we will get the value of electric potential.