Answer:
Ok, so the process here is to convert the mass of H2 (hydrogen gas) to moles by dividing the mass by the molar mass of H2. Once you have the moles then you have to multiply by the STP (standard temperature and pressure) molar volume which should be 22.4.
Molar mass of H2 = (1.01)x2 = 2.02g/mol
19.3/2.02 = 9.55 moles
Now just multiply the moles by the molar volume
9.55 moles x 22.4 = 213.92 Litres of H2 are in 19.3g of H2
Answer:
SnF2
Explanation:
you divide by the smallest number which is 3.37
Answer:
1. 7 (a neutral solution)
Answer: 10-7= 0.0000001 moles per liter
2. 5.6 (unpolluted rainwater)
Answer: 10-5.6 = 0.0000025 moles per liter
3. 3.7 (first acid rain sample in North America)
Answer: 10-3.7 = 0.00020 moles per liter
The concentration of H+ in the Hubbard Brook sample is 0.00020/0.0000025, which is 80 times higher than the H+ concentration in unpolluted rainwater.
Explanation:
The first and Third graph
Answer:
Monatomic molecule
Explanation:
Each helium atom has 2 electrons, which is already the maximum no. of electrons that can fit in the first electron shell. When the outermost electron shell is full (2 for the first layer, 8 for others), the atom is stable.
Helium atom itself is already stable, so it doesn't need to combine with another helium atom to form a molecule, hence we call it monatomic.