,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
the answer is A......
it is supported by practical evidence and examples. this is the answer because he tried and tested many different ways to see what would happen so he is happy with the conclusion that what he tested is what he gets.
Answer:
79.04 L
Explanation:
We are given;
Initial Volume; V1 = 6.24L
Initial Pressure; P1 = 760 mm Hg
Final pressure; P2 = 60.0mm Hg
To solve for final volume, we will use Boyles law;
P1•V1 = P2•V2
Let's make V2 which is the final volume the subject;
V2 = (P1•V1)/P2
V2 = (760 × 6.24)/60
V2 = 79.04 L
Answer:
See explanation below
Explanation:
In this case we have reaction of addition. In this case a diene reacting with an acid as HBr. This reaction is known as Hydrohalogenation, and, as we have a diene, this kind of reaction can be done as 1,4 addition. Which means that the reaction will be undergoing with an adition in the carbon 1, and carbon 4.
At room temperature we can expect that this reaction can be done in thermodynamic conditions, Now, as the problem states that is forming 4 products, we can expect products of a 1,2 addition too. This product can be formed if the reaction is taking place in the most stable carbocation, and then, by resonance, we can expect the 1,4 product too.
Now, the HBr can be attacked by the double bond of the first position, giving two possible products or by the double bond of the third position giving the other two products. These products are all possible, obviously the most stable will be the major of all of them, but the other three are perfectly possible. One product is formed without doing much, and the other by resonance. Same happens with the other double bond.
In the picture below, you have the mechanism for all the 4 products.
Hope this helps