Answer: A plot of the natural log of the concentration of the reactant as a function of time is linear.
Explanation:
Since it was explicitly stated in the question that the half life is independent of the initial concentration of the reactant then the third option must necessarily be false. Also, the plot of the natural logarithm of the concentration of reactant against time for a first order reaction is linear. In a first order reaction, the half life is independent of the initial concentration of the reactant. Hence the answer.
Answer:
1. Rutherford did the scattering experiment and observed that some of the rays bounce back. He concluded that there is a mass in which positive charge is concentrated. This marks the discovery of nucleus.
2. J.J Thomson discovered electrons by conducting cathode ray experiment.
3. Dalton postulated that matter is made up of small particles caled atoms
Decomposition is a chemical reaction that breaks the reactant into two or more products. Moles of nitrogen gas
in the cylinder is 1.63 moles.
<h3>What is the ideal gas equation?</h3>
The ideal gas equation states the relation of the hypothetical ideal gas according to the pressure, volume, temperature and moles of the gas. It is given by,

Where,
Pressure (P) = 2000 kPa
Volume (V) = 2L
Temperature (T) = 295 K
Gas constant (R)= 0.08206
Substituting values in the equation:

Therefore, 1.63 moles are produced.
Learn more about ideal gas equation here:
brainly.com/question/26720901
Answer:
Conductivity meter
Explanation:
A conductivity meter is normally used to measure the amount of electrical current or conductance in a solution. Conductivity is most useful in determining the overall health of a natural water body.
A pH paper is used to determine the pH of a solution. This is done by dipping part of the paper into a solution of interest and watching the color change. The pH paper comes in a color-coded scale indicating the pH that something has when the paper turns a certain color.
An indicator is an organic compound that changes its colour depending on the pH of the solution.
Since neutralization reaction can only be monitored by monitoring the pH of the solution, a conductivity meter cannot be used to monitor the progress of a neutralization reaction since it does not monitor the change in pH of the system under study.
1- metal and non metal
2- true
3- chlorine