If everyone died then the too people were not on the plane they were near by when the plane crashed and were not onbard.
Refer to the diagram shown below.
The initial KE (kinetic energy) of the system is
KE₁ = (1/2)mu²
After an inelastic collision, the two masses stick together.
Conservation of momentum requires that
m*u = 2m*v
Therefore
v = u/2
The final KE is
KE₂ = (1/2)(2m)v²
= m(u/2)²
= (1/4)mu²
= (1/2) KE₁
The loss in KE is
KE₁ - KE₂ = (1/2) KE₁.
Conservation of energy requires that the loss in KE be accounted for as thermal energy.
Answer: 1/2
To solve this problem it is necessary to apply the concepts related to the Gravitational Force, for this purpose it is understood that the gravitational force is described as

Where,
G = Gravitational Universal Force
Mass of each object
To solve this problem it is necessary to divide the gravitational force (x, y) into the required components and then use the tangent to find the angle generated between both components.
Our values are given as,

Applying the previous equation at X-Axis,

Applying the previous equation at Y-Axis,

Therefore the angle can be calculated as,

Then in the measure contrary to the hands of the clock the Force in the particle 3 is in between the positive direction of the X and the negative direction of the Y at 71 ° from the positive x-axis.
Red has the longer wavelength. Wavelength and frequency are inversely related, so the longer the wavelength, the lower the frequency. This lower frequency is them perceived by our eye as the color red.