Answer:
The reaction would shift toward the reactants
When the reaction reach equilibrium the partial pressure of NH3 will be greater than 1atm
Explanation:
For the reaction:
2NH₃(g) ⇄ N₂(g) + 3H₂(g)
Where K is defined as:

As initial pressures of all 3 gases is 1.0atm, reaction quotient, Q, is:

As Q > K, <em>the reaction will produce more NH₃ until Q = K consuming N₂ and H₂.</em>
Thus, there are true:
<h3>The reaction would shift toward the reactants</h3><h3>When the reaction reach equilibrium the partial pressure of NH3 will be greater than 1atm</h3>
<em />
Should be their masses. Because t<span>he strength of the gravitational force between two objects depends on two factors, mass and </span>distance<span>. the force of gravity the masses exert on each other. If one of the masses is doubled, the force of gravity between the objects is doubled. increases, the force of gravity decreases.</span>
Explanation:
4 x 6.02 x 10²³ = 2.41 x 10²⁴
DeltaH formation = deltaH of broken bonds - deltaH of formed bonds
Broken bonds: tiple bond N-N and H-H bond
Formed bonds: N-H and N-N bonds
You also have to take note of the molar coefficients
deltaH formation = <span> [(N≡N) + 2 * (H-H)] - [4 * (N-H) + (N-N)]
= (945 + 2*436) - (4*390 + 240)
= 17 kJ/mol
The answer is 17 kJ/mol.</span>