Answer:
B is the best answer for the question
Answer:
1.) 440 Hz
2.) 659.3 Hz
Explanation:
1.) Given parameters are:
wavelength = 0.77955 m.
speed of sound = 343.00 m/s
Frequency = speed/ wavelength
Substitute speed and wavelength into the formula
Frequency = 343/ 0.77955
Frequency = 439.99
Frequency = 440 Hz approximately
2.) The parameters given are:
wavelength = 0.52028 m.
speed of sound = 343.00 m/s
Using the same formula
Frequency = speed/wavelength
Substitute all the parameters into the formula
Frequency = 343 / 0.52028
Frequency = 659.3 Hz approximately
The pitch of a note depends on the frequency of the sound waves.
The pitch of a sound increases as the frequency of the sound waves increases.
d = distance = 0.76 m <span>
<span>a = acceleration due to gravity = 9.81 m/s^2</span>
u = initial velocity = 0 (as the ball rolls off the table the
vertical velocity = 0
t = time = missing so we need to solve it
So we use the equation d = ut + 1/2 at², and ever since u is
zero, ut is zero and the equation becomes to d = 1/2 at² and this reorders to t
= sqrt (2d/a) = 0.39 seconds.
Since there are no forces performing in the horizontal
direction, this means that there is no acceleration in the horizontal direction
and consequently the horizontal velocity is persistent. </span>
Velocity = distance/
time.
Horizontal velocity is
therefore horizontal distance/time = 0.61 m/0.39s = 1.56 m/s.
<span> </span>