I believe your answer would be A. Due to the friction of pushing the chair while it’s on the floor
The lemon trees will always be the same so they are the constants. The independent variable is the water amount because it is changing. The dependent variable is the amount of lemons because it is the variable being tested. (If we change the amount of water how many lemons will be produced?)
An exothermic reaction is a chemical reaction that releases heat. It gives net energy to its surroundings. That is, the energy needed to initiate the reaction is less than the energy released. ... Δ H = (energy used in forming product bonds) − (energy released in breaking reactant bonds)
Answer:
Explanation:
There are two types of collision.
(a) Elastic collision: When there is no loss of energy during the collision, then the collision is said to be elastic collision.
In case of elastic collision, the momentum is conserved, the kinetic energy is conserved and all the forces are conservative in nature.
The momentum of the system before collision = the momentum of system after collision
The kinetic energy of the system before collision = the kinetic energy after the collision
(b) Inelastic collision: When there is some loss of energy during the collision, then the collision is said to be inelastic collision.
In case of inelastic collision, the momentum is conserved, the kinetic energy is not conserved, the total mechanical energy is conserved and all the forces or some of the forces are non conservative in nature.
The momentum of the system before collision = the momentum of system after collision
The total mechanical energy of the system before collision = total mechanical of the system after the collision
Current is defined as the rate of charge flowing a point every second. Having a current of 1 Ampere signifies 1 Coulomb is flowing in a circuit every second. It is measured by the use of an ammeter which is positioned in series to the component to be measured. The current in the problem is calculated as follows:
I = 2.0 x 10^-4 C / 5.0 x 10^-5 s
<span>I = 4 A or 4.0 x 10^0 A</span>