Answer:
8.46E+1
Explanation:
From the question given above, the following data were obtained:
Charge 1 (q₁) = 39 C
Charge 2 (q₂) = –53 C
Force (F) of attraction = 26×10⁸ N
Electrical constant K) = 9×10⁹ Nm²/C²
Distance apart (r) =?
The distance between the two charges can be obtained as follow:
F = Kq₁q₂ / r²
26×10⁸ = 9×10⁹ × 39 × 53 / r²
26×10⁸ = 1.8603×10¹³ / r²
Cross multiply
26×10⁸ × r² = 1.8603×10¹³
Divide both side by 26×10⁸
r² = 1.8603×10¹³ / 26×10⁸
r² = 7155
Take the square root of both side
r = √7155
r = 84.6 m
r = 8.46E+1 m
Answer:
Force: Strength or energy as an attribute of physical action or movement.
Answer:
Yes the frequency of the angular simple harmonic motion (SHM) of the balance wheel increases three times if the dimensions of the balance wheel reduced to one-third of original dimensions.
Explanation:
Considering the complete question attached in figure below.
Time period for balance wheel is:


m = mass of balance wheel
R = radius of balance wheel.
Angular frequency is related to Time period as:

As dimensions of new balance wheel are one-third of their original values


Answer:
The tangential speed of the tack is 8.19 m/s.
Explanation:
The wheel rotates 3.37 times a second that means wheel complete 3.37 revolutions in a second. Therefore, the angular speed ω of the wheel is given as follows:

Use the relation of angular speed with tangential speed to find the tangential speed of the tack.
The tangential speed v of the tack is given by following expression
v = ω r
Here, r is the distance to the tack from axis of rotation.
Substitute 21.174 rad/s for ω, and 0.387 m for r in the above equation to solve for v.
v = 21.174 × 0.387
v = 8.19m/s
Thus, The tangential speed of the tack is 8.19 m/s.
So mathematical harmonics are based around a divergent set of fractions. Sigma(1/n)
with the 1st harmonic being... well 1, or 1 full wavelength.The second harmonic is exactly 1/2 the wavelength of the 1st with the third being 1/3 the wavelength. As Wavelengths go down, frequencies go up in a perfect ratio.
Second Harmonic has double the Frequency of the 1st or base note. Third Harmonic is triple and so on.
So the Harmonic set of 375 is.
1. 375
2. 375×2=750
3. 375×3= 1125
.
.
.
etc (: I hope this helps.