It gets weaker, because that's a principle of electromagnets. The field force is directly proportional with tension.
Answer:
The average speed of the bus, v = 1.55 m/s
Explanation:
Given that,
Number of blocks traveled by bus towards east = 6
Number of blocks traveled by bus towards north = 8
Length of each block = 100 m
Distance traveled by bus towards east 6 x 100 = 600 m
Distance traveled by bus towards north 8 x 100 = 800 m
The total distance traveled, d = 600 + 800 = 1400
Time taken by the bus to travel is, t = 15 minutes
The velocity is given by the formula
v = d/t m
Substituting the values in the above equation
v = 1400 m /(15 x 60) s
= 1.55 m/s
Hence, the average speed of the bus, v = 1.55 m/s
We will have the following:
First, the equation to use is the following:

Now, we transform the total distance the cat would need to travel:

So, the cat would need to travel 1.5 meters. ("d" in the equation).
Now, using the speed given we determine the time it would take the cat to traverse the 1.5 meters:

So, the time it would take the cat to traverse the distance will be approximately 3.33 seconds.
Now, we know that the acceleration will be given by Earth's gravity, so:


So, the initial vvelocity the cat must leave the floor in order to arrive at the butterfly with the optimum pouncing speed of 0.45 m/s is approximately 16.78 m/s or exactly 1007/60 m/s.
C. Electrical current increases as resistance decreases
Explanation:
It is given that,
Mass of the passenger, m = 75 kg
Acceleration of the rocket, 
(a) The horizontal component of the force the seat exerts against his body is given by using Newton's second law of motion as :
F = m a

F = 3675 N
Ratio, 

So, the ratio between the horizontal force and the weight is 5 : 1.
(b) The magnitude of total force the seat exerts against his body is F' i.e.


F' = 3747.7 N
The direction of force is calculated as :



Hence, this is the required solution.