The component of the total velocity in the x - direction is 6.96 m/s.
The component of the total velocity in the y - direction is 2.95 m/s.
<h3>
Component of the velocity in x direction </h3>
The component of the total velocity in the x - direction is calculated as follows;
v(x) = vtot cosθ
where;
- vtot is total velocity
- v(x) is velocity in x direction
v(x) = 7.56 x cos(23)
v(x) = 6.96 m/s
<h3>
Component of the velocity in y - direction</h3>
v(y) = vtot sinθ
v(y) = 7.56 x sin(23)
v(y) = 2.95 m/s
Learn more about component velocity here: brainly.com/question/24681896
#SPJ1
False
Explanation:
Called an asteroid for many years, Ceres is so much bigger and so different from its rocky neighbors that scientists classified it as a dwarf planet in 2006. Even though Ceres comprises 25 percent of the asteroid belt's total mass, tiny Pluto is still 14 times more massive.
A. Occluded
Explanation- At an occluded front, the cold air mass from the cold front meets the cool air that was ahead of the warm front.
Answer:
<em>d. unchanged.</em>
Explanation:
The frequency of a wave is dependent on the speed of the wave and the wavelength of the wave. The frequency is characteristic for a wave, and does not change with distance. This is unlike the amplitude which determines the intensity, which decreases with distance.
In a wave, the velocity of propagation of a wave is the product of its wavelength and its frequency. The speed of sound does not change with distance, except when entering from one medium to another, and we can see from
v = fλ
that the frequency is tied to the wave, and does not change throughout the waveform.
where v is the speed of the sound wave
f is the frequency
λ is the wavelength of the sound wave.
Answer:
25 N
Explanation:
Work is a product of force and perpendicular distance moved.
W=Fd where F is force exerted and d is perpendicular distance.
However, for this case, the distance is inclined hence resolving it to perpendicular so that it be along x-axis we have distance as 
Therefore, 
Making F the subject of the formula then
where
is the angle of inclination. Substituting 190 J for W then 18 degrees for
and 8 m for d then