A car that experiences a deceleration of -41.62 m/s² and comes to a stop after 10.99 m has an initial velocity of 30.60 m/s.
A car experiences a deceleration (a) of -41.62 m/s² and comes to a stop (final velocity = v = 0 m/s) after 10.99 m (s).
We can calculate the initial velocity of the car (u) using the following kinematic equation.
![v^{2} = u^{2} + 2as\\\\u = \sqrt[]{v^{2}-2as} = \sqrt[]{(0m/s)^{2}-2(-42.61m/s^{2} )(10.99m)} = 30.60m/s](https://tex.z-dn.net/?f=v%5E%7B2%7D%20%3D%20u%5E%7B2%7D%20%2B%202as%5C%5C%5C%5Cu%20%3D%20%5Csqrt%5B%5D%7Bv%5E%7B2%7D-2as%7D%20%3D%20%5Csqrt%5B%5D%7B%280m%2Fs%29%5E%7B2%7D-2%28-42.61m%2Fs%5E%7B2%7D%20%29%2810.99m%29%7D%20%3D%2030.60m%2Fs)
A car that experiences a deceleration of -41.62 m/s² and comes to a stop after 10.99 m has an initial velocity of 30.60 m/s.
Learn more: brainly.com/question/14851168
Pretty sure it's C) condensation because all of the others required heat to be added
A. I just took a quiz on it and A was my answer
Answer: A
Explanation:Earthquakes occur on faults - strike-slip earthquakes occur on strike-slip faults, normal earthquakes occur on normal faults, and thrust earthquakes occur on thrust or reverse faults. When an earthquake occurs on one of these faults, the rock on one side of the fault slips with respect to the other.
Answer:
1 cycle every 2 seconds if that is what it is asking. So you have to do 2 x 30 and you will get 60 so ur awnser is 60
Explanation: