Answer:
Step-by-step explanation:
Given: The radius of circle O is r, and the radius of circle X is r'.
To prove: Circle O is similar to circle X.
Proof: Move the center of the smaller circle onto the center of the largest circle. Translate the circle X by the vector XA onto circle O. The circles now have the same center.
A dilation is needed to increase the size of circle X to coincide with the circle O. A value which when multiplied by r' will create r.
The scale factor x to increase X:
⇒
A translation followed by a dilation with scale factor will map one circle to the other, thus proving the given both circles similar.
Therefore, circle O is similar to circle X.
Step-by-step explanation:
Answer:
I am deeply sorry for the late answer
but the answer is The answer is
r ≈ 6
Step-by-step explanation:
The answer is r ≈ 6
A ≈ 113.04 cubic in.
this means that
d ≈ 12
and
C ≈ 37.69
Therefore
r ≈ 6
Hope this helped.
Answer: $49.78
Step-by-step explanation: $15.75 + $28.79 + $5.24 = $49.78
The sum must be irrational in contradiction to it being rational
9514 1404 393
Answer:
38.2°
Step-by-step explanation:
The law of sines tells you ...
sin(x)/15 = sin(27°)/11
sin(x) = (15/11)sin(27°) . . . . . multiply by 15
x = arcsin((15/11)sin(27°)) ≈ arcsin(0.619078) ≈ 38.2488°
x ≈ 38.2°
_____
<em>Additional comment</em>
In "law of sines" problems, you need to identify a side and opposite angle that you know both values of. Then, you need to identify whether you're looking for an angle or a side, and whether its opposite side or angle is known. If two angles are known, you can always figure the third from the sum of angles in a triangle.
Here, we have angle 27° opposite side 11. We are looking for an angle, and we know its opposite side. This lets us use the ratio formula directly. Since the angle is the unknown, it is useful to write the equation with sines on top and sides on the bottom.
The given angle is opposite the shorter of the given sides, so this triangle has two solutions. We assume that we want the solution that is an acute angle (141.8° is the other solution). That assumption is based on the drawing. Usually, you're cautioned not to take the drawings at face value.