Answer:
Dx = -0.5
Dy = -0.25
Explanation:
Two vectors are given in rectangular components form as follows:
A = i + 6j
B = 3i - 7j
It is also given that:
A - B - 4D = 0
so, we solve this to find D vector:
(i + 6j) - (3i - 7j) - 4D = 0
- 2i - j = 4D
D = - (2/4)i - (1/4)j
D = - (1/2)i - (1/4)j
<u>D = - 0.5i - 0.25j</u>
Therefore,
<u>Dx = -0.5</u>
<u>Dy = -0.25</u>
Answer:
.7934
Explanation:
Acceleration = change in velocity / change in time
A = 10.98
/ 13.84
A = .7934
A wall uses diffuse reflection while a mirror uses specular reflection. For example, when parallel light rays enter a mirror, they remain parallel when exiting the mirror, allowing you to see a reflection of the light rays. On the contrary, when incident light rays enter a wall which is painted, the rays scatter, not allowing you to see anything but a painted wall.
Answer:
Micro and radio waves.
Lower energy.
Gamma rays.
Explanation:
The electromagnetic spectrum is the range of frequencies of electromagnetic radiation and their respective wavelengths.
Ionising radiation os defined as the energy required of photons of a wave to ionize atoms, causing chemical reactions.
The energy of the wave depends on both the amplitude and the frequency. If the energy of each wavelength is a discrete packet of energy, a high-frequency wave will deliver more of these packets per unit time than a low-frequency wave. In summary, the longer the wavelength, the lower the energy to ionise.
The velocity of a wave is directly proportional to the frequency of that wave.
c = f * lambda
Where,
c = velocity of the wave
f = frequency of the wave = 1/time
Lambda = wavelength.
From the above expression, the longer the wavelength, lambda the shorter the frequency.
Examples of waves with longer wavelengths are, micro and radio waves, while radiations with shorter wavelengths like gamma rays.
When a neutron or a proton in the nucleus changes a gamma ray is produced (gamma rays are electromagnetic waves)
When an electron drops from a higher energy level to a lower energy level an electromagnetic wave is give off.