My guess would probably be A
        
             
        
        
        
There's more than one way to combine them really
but an obvious one will be
![\bf \begin{array}{llll}
h(x)&=&(f\circ g)(x)\\\\
&&\sqrt[3]{7x+1}\\\\
&&\sqrt[3]{g(x)}\leftarrow 
\begin{array}{llll}
f(x)=\sqrt[3]{x }\\\\
g(x)=7x+1
\end{array}
\end{array}\\\\
-----------------------------\\\\
(f\circ g)(x)\iff f[\quad g(x)\quad ]=\sqrt[3]{g(x)}\implies  f[\quad g(x)\quad ]=\sqrt[3]{7x+1}](https://tex.z-dn.net/?f=%5Cbf%20%5Cbegin%7Barray%7D%7Bllll%7D%0Ah%28x%29%26%3D%26%28f%5Ccirc%20g%29%28x%29%5C%5C%5C%5C%0A%26%26%5Csqrt%5B3%5D%7B7x%2B1%7D%5C%5C%5C%5C%0A%26%26%5Csqrt%5B3%5D%7Bg%28x%29%7D%5Cleftarrow%20%0A%5Cbegin%7Barray%7D%7Bllll%7D%0Af%28x%29%3D%5Csqrt%5B3%5D%7Bx%20%7D%5C%5C%5C%5C%0Ag%28x%29%3D7x%2B1%0A%5Cend%7Barray%7D%0A%5Cend%7Barray%7D%5C%5C%5C%5C%0A-----------------------------%5C%5C%5C%5C%0A%28f%5Ccirc%20g%29%28x%29%5Ciff%20f%5B%5Cquad%20g%28x%29%5Cquad%20%5D%3D%5Csqrt%5B3%5D%7Bg%28x%29%7D%5Cimplies%20%20f%5B%5Cquad%20g%28x%29%5Cquad%20%5D%3D%5Csqrt%5B3%5D%7B7x%2B1%7D) 
 
        
        
        
Answer:
<em>Factored Form: </em><em> </em><em>( y - 2 )( 3y + 7 )</em>
Step-by-step explanation:
<em>1. Let us first write down the problem at hand: </em>3y^2 + y - 14
<em>2. Now let us break this expression into groups:  </em>
3y^2 - 6y + 7y - 14  ⇒ ( 3y^2 - 6y )( 7y - 14 )
<em>3. Factor 3y from 3y^2 - 6y:</em>
3y^2 - 6y ⇒ 3y( y - 2 )
<em>4. Factor 7 from 7y - 14:</em>
7y - 14 ⇒ 7( y - 2 )
<em>5. Substitute Step #3, 4 ⇒ Step #2:</em>
3y( y - 2 ) + 7( y - 2 )
<em>6. Factor common term y - 2:</em>
<em>Answer: ( y - 2 )( 3y + 7 )</em>
 
        
             
        
        
        
Answer:

Step-by-step explanation:





~
 
        
             
        
        
        
Answer: #64, A. #67, A. #68, C
Step-by-step explanation:
#64
0.96/6= 0.16
2.4/16= 0.15
32= 0.18
16 oz is the least
#67
100/20=5
3*5=15
SO, it's 15%.
#68
Divide
$430/43= $10
$594/54= $11
Andrew= $8
So, Darren makes the most.