Answer:
There are 0.93 g of glucose in 100 mL of the final solution
Explanation:
In the first solution, the concentration of glucose (in g/L) is:
15.5 g / 0.100 L = 155 g/L
Then a 30.0 mL sample of this solution was taken and diluted to 0.500 L.
- 30.0 mL equals 0.030 L (Because 30.0 mL ÷ 1000 = 0.030 L)
The concentration of the second solution is:

So in 1 L of the second solution there are 9.3 g of glucose, in 100 mL (or 0.1 L) there would be:
1 L --------- 9.3 g
0.1 L--------- Xg
Xg = 9.3 g * 0.1 L / 1 L = 0.93 g
Answer:
For part (a): pHsol=2.22
Explanation:
I will show you how to solve part (a), so that you can use this example to solve part (b) on your own.
So, you're dealing with formic acid, HCOOH, a weak acid that does not dissociate completely in aqueous solution. This means that an equilibrium will be established between the unionized and ionized forms of the acid.
You can use an ICE table and the initial concentration ofthe acid to determine the concentrations of the conjugate base and of the hydronium ions tha are produced when the acid ionizes
HCOOH(aq]+H2O(l]⇌ HCOO−(aq] + H3O+(aq]
I 0.20 0 0
C (−x) (+x) (+x)
E (0.20−x) x x
You need to use the acid's pKa to determine its acid dissociation constant, Ka, which is equal to
Answer:
D-Glucose and L-Glucose
Explanation:
Aldohexose are the sugars which have six number of carbons and ends up in having an aldehyde group at one end. When dilute nitric acid is treated with any of them, the molecule gets oxidized (gets oxygen) and therefore turns into carboxylic acid.
The name of A is D-Glucose, and B is L-Glucose. Please find the structural formula attached.