The last one, answer is D
A random person put the answer for you
Yes, it is a special case of enthalpy of neutralization.
The enthalpy of neutralization (ΔHn) is the change in enthalpy that occurs when one equivalent of an acid and one equivalent of a base undergo a neutralization reaction to form water and a salt.
The standard enthalpy change of neutralization is the enthalpy change when solutions of an acid and an alkali react together under standard conditions to produce 1 mole of water.
Answer:
18.0 g of mercury (11) oxide decomposes to produce 9.0 grams of mercury
Explanation:
Mercury oxide has molar mass of 216.6 g/ mol. It gas a molecular formula of HgO.
The decomposition of mercury oxide is given by the chemical equation below:
2HgO ----> 2Hg + O₂
2 moles of HgO decomposes to produce 1 mole of Hg
2 moles of HgO has a mass of 433.2 g
433.2 g of HgO produces 216.6 g of Hg
18.0 of HgO will produce 18 × 216.6/433.2 g of Hg = 9.0 g of Hg
Therefore, 18.0 g of mercury (11) oxide decomposes to produce 9.0 grams of mercury