Answer : The value of
for the given reaction is, 0.36
Explanation :
Equilibrium constant : It is defined as the equilibrium constant. It is defined as the ratio of concentration of products to the concentration of reactants.
The equilibrium expression for the reaction is determined by multiplying the concentrations of products and divided by the concentrations of the reactants and each concentration is raised to the power that is equal to the coefficient in the balanced reaction.
As we know that the concentrations of pure solids and liquids are constant that is they do not change. Thus, they are not included in the equilibrium expression.
The given equilibrium reaction is,

The expression of
will be,
![K_c=\frac{[BrCl]^2}{[Br_2][Cl_2]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BBrCl%5D%5E2%7D%7B%5BBr_2%5D%5BCl_2%5D%7D)
First we have to calculate the concentration of
.



Now we have to calculate the value of
for the given reaction.
![K_c=\frac{[BrCl]^2}{[Br_2][Cl_2]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BBrCl%5D%5E2%7D%7B%5BBr_2%5D%5BCl_2%5D%7D)


Therefore, the value of
for the given reaction is, 0.36
If it loses an electron, it will become an ion.
Answer:
moles of glucose
<u>2.3166 moles of glucose</u>
<u></u>
Explanation:
The balance reaction for the formation of glucose is :

here , CO2 = carbon dioxide
H2O = water
C6H12O6 = glucose
O2 = Oxygen
According to this equation :
6 mole of CO2 = 6 mole of H2O = 1 mole of C6H12O6 = 6 mole of O2
We are asked to calculate the mole of Glucose from carbon dioxide.
So,
6 mole of CO2 produce = 1 mole of C6H12O6
1 mole of CO2 will produce =
moles of glucose
13.9 moles of CO2 will produce :

=2.3166 moles of glucose
Note : first , Always calculate for one mole (By dividing)
. After this , multiply the answer with the moles given.
Always write the substance whose amount is asked(glucose) to the right hand side