Answer:
The speed it reaches the bottom is

Explanation:
Given:
, 
Using the conservation of energy theorem


, 
![m*g*h=\frac{1}{2}*m*(r*w)^2 +\frac{1}{2}*[\frac{1}{2} *m*r^2]*w^2](https://tex.z-dn.net/?f=m%2Ag%2Ah%3D%5Cfrac%7B1%7D%7B2%7D%2Am%2A%28r%2Aw%29%5E2%20%2B%5Cfrac%7B1%7D%7B2%7D%2A%5B%5Cfrac%7B1%7D%7B2%7D%20%2Am%2Ar%5E2%5D%2Aw%5E2)


Solve to w'





Answer:
q_poly = 14.55 KJ/kg
Explanation:
Given:
Initial State:
P_i = 550 KPa
T_i = 400 K
Final State:
T_f = 350 K
Constants:
R = 0.189 KJ/kgK
k = 1.289 = c_p / c_v
n = 1.2 (poly-tropic index)
Find:
Determine the heat transfer per kg in the process.
Solution:
-The heat transfer per kg of poly-tropic process is given by the expression:
q_poly = w_poly*(k - n)/(k-1)
- Evaluate w_poly:
w_poly = R*(T_f - T_i)/(1-n)
w_poly = 0.189*(350 - 400)/(1-1.2)
w_poly = 47.25 KJ/kg
-Hence,
q_poly = 47.25*(1.289 - 1.2)/(1.289-1)
q_poly = 14.55 KJ/kg
Answer:
if there is no friction in a simple machine, work output and work input are found equal in that machine
Explanation: