Answer:
find the diagram in the attachment.
Explanation:
Let vi = 12 m/s be the intial velocy when the ball is thrown, Δy be the displacement of the ball to a point where it starts returning down, g = 9.8 m/s^2 be the balls acceleration due to gravity.
considering the motion when the ball thrown straight up, we know that the ball will come to a stop and return downwards, so:
(vf)^2 = (vi)^2 + 2×g×Δy
vf = 0 m/s, at the highest point in the upward motion, then:
0 = (vi)^2 + 2×g×Δy
-(vi)^2 = 2×g×Δy
Δy = [-(vi)^2]/2×g
Δy = [-(-12)^2]/(2×9.8)
Δy = - 7.35 m
then from the highest point in the straight up motion, the ball will go back down and attain the speed of 12 m/s at the same level as it was first thrown
Explanation:
I'm corona positive and isolated feeling depressed just logged in to talk someone but people ignoring me thanks for this behaviour got disappointed bye everyone logging out had a great time
Answer:
16 m/s^2
Explanation:
acceleration tangential = (v^2)/r
a=400/25
a=16 m/s^2
Side note: next time, be more specific when asking about acceleration in circular motion. There's more than one type! Example:
angular acceleration=acceleration tangential/r
angular acc.=16/25
angular acc.=0.64 rad/s^2
Answer:
Dark matter does not affect our view, humans can see through them.
Explanation:
They do not affect our view because we can see right through the (weakly interacting) dark matter, as they do not interact or interfere with electromagnetic force.
Dark matter are often invisible substances and are difficult to spot because they don't absorb or reflect light.
Answer:
A fundamental theory that provides a description of the physical properties of nature at the scale of atoms and subatomic particles.
Explanation: