Answer:
hmax = 1/2 · v²/g
Explanation:
Hi there!
Due to the conservation of energy and since there is no dissipative force (like friction) all the kinetic energy (KE) of the ball has to be converted into gravitational potential energy (PE) when the ball comes to stop.
KE = PE
Where KE is the initial kinetic energy and PE is the final potential energy.
The kinetic energy of the ball is calculated as follows:
KE = 1/2 · m · v²
Where:
m = mass of the ball
v = velocity.
The potential energy is calculated as follows:
PE = m · g · h
Where:
m = mass of the ball.
g = acceleration due to gravity (known value: 9.81 m/s²).
h = height.
At the maximum height, the potential energy is equal to the initial kinetic energy because the energy is conserved, i.e, all the kinetic energy was converted into potential energy (there was no energy dissipation as heat because there was no friction). Then:
PE = KE
m · g · hmax = 1/2 · m · v²
Solving for hmax:
hmax = 1/2 · v² / g
Acceleration formulae is:
a=Fnet/mass
According to the question
a=7500N/1500kg
a=5m/s sq.
Its A The paper clip is repelled away from the nail because an electromagnetic field magnetized to the nail
Answer:
1.2
Explanation:
2.0 mol O₂ × (3 mol CO₂ / 5 mol O₂) = 1.2 mol CO₂
Jake will start to be addicted to his computer and getting no exercise and he will become lazy