Answer:
44.8 m/s
Explanation:
Use the Initial Speed Formula:
InS = 2(d/t) - Final Speed
InS = 2(55/1,25) - 43.2
InS = 2.44 - 43,2
InS = 88 - 43,2
InS = 44.8 m/s
Answer:
The approximate number of decays this represent is
Explanation:
From the question we are told that
The amount of Radiation received by an average american is 
The source of the radiation is 
Generally

Therefore 
Also 
Therefore 
An Average american weighs 88.7 kg
The total energy received is mathematically evaluated as

Cross-multiplying and making x the subject


Therefore the total energy deposited is 
The approximate number of decays this represent is mathematically evaluated as
N = 
Where n is the approximate number of decay
Substituting values
Answer:
100N
Explanation:
Newton's third law of motion
For every action, there is an equal and opposite reaction.
Therefore 100N of force is exerted by the crate on student as a reaction to his action
Answer:A
Explanation:matter normally occurs in three phases;solid, liquid and gases. They may change from one phase to another due to temperature difference.
The molecules that makes up solids are held together by bonds. When heat is added,the molecules begin to move as a result,the bonds break and it turns to liquid.this process is called melting. The reverse of melting is freezing.
Liquid are made up of molecules that moves more freely than solids. When heat is added to liquid,the molecules gain more energy and begins to move faster. This causes them to turn to gases.
This process is called evaporation. It occurs at different temperature for different substances.
The particles of gases move more faster and are separated by large distances. A gas can change back to a liquid through condensation.
Answer:
A vacuum
Explanation:
Sound waves are examples of mechanical waves. Mechanical waves are waves which are transmitted through the vibrations of the particles in a medium.
For example, sound waves in air consist of oscillations of the air particles, which vibrate back and forth (longitudinal wave) along the direction of propagation of the wave itself.
Given this definition of mechanical wave, we see that such a wave cannot propagate if there is no medium, because there are no particles that would oscillate. Therefore, among the choices given, the following one:
a vacuum
represent the only situation in which a sound wave cannot propagate through: in fact, there are no particles in a vacuum, so the oscillations cannot occur. In all other cases, instead, sound waves can propagate.