1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
shutvik [7]
3 years ago
5

Choose the aqueous solution that has the highest boiling point. These are all solutions of nonvolatile solutes and you should as

sume ideal van't Hoff factors where applicable. Choose the aqueous solution that has the highest boiling point. These are all solutions of nonvolatile solutes and you should assume ideal van't Hoff factors where applicable. a. 0.100 m Li₂SO₄
b. 0.100 m KNO₂
c. 0.200 m C₃H₈O₃
d. 0.060 m Li₃PO₄e. They all have the same boiling point.
Chemistry
2 answers:
Anettt [7]3 years ago
6 0

Answer: 0.100 m Li_2SO_{4}

Explanation:

\Delta T_b=i\times k_b\times m

\Delta T_b =  Elevation in boiling point

i = Van'T Hoff factor  

k_f = boiling point constant

m = molality

1. For 0.100 m Li_2SO_{4}

Li_2SO_4\rightarrow 2Li^{+}+SO_4^{2-}

i= 3 as it is a electrolyte and dissociate to give 3 ions.

Thus concentration of ions =3\times 0.100=0.300

2. For 0.100 m KNO_{2}

KNO_2\rightarrow K^{+}+NO_2^{-}  

i= 2 as it is a electrolyte and dissociate to give 2 ions.

Thus concentration of ions =2\times 0.100=0.200

3. For 0.200 m C_3H_8O_3

i= 1 as it is a non electrolyte and do not dissociate to give ions.

4. For 0.060 m Li_3PO_4

Li_3PO_4\rightarrow 3Li^{+}+PO_4^{3-}  

i= 4 as it is a electrolyte and dissociate to give 4 ions.

Thus concentration of ions =4\times 0.060=0.24

Thus as concentration of ions is highest for Li_2SO_{4} and the boiling point will be highest.

Nuetrik [128]3 years ago
4 0

0.060 m Li₃PO₄ has the highest boiling point

<h3>Further explanation </h3>

Solution properties are the properties of a solution that don't depend on the type of solute but only on the concentration of the solute.

Solution properties of electrolyte solutions differ from non-electrolyte solutions because electrolyte solutions contain a greater number of particles because electrolytes break down into ions. So the Solution properties of electrolytes is greater than non-electrolytes.

The term is used in the Solution properties

  • 1. molal

that is, the number of moles of solute in 1 kg of solvent

\large {\boxed {\bold {m = mole. \frac {1000} {mass \: of \: solvent (in \: grams)}}}

  • 2. Boiling point and freezing point

Solutions from volatile substances have a higher boiling point and lower freezing points than the solvent

ΔTb = Tb solution - Tb solvent

ΔTb = boiling point elevation

\rm \Delta T_f = T_fsolvent-T_fsolution

\large {\boxed {\boxed {\bold {\Delta Tb \: = \: Kb.m}}}

\rm \Delta T_f = K_f \times m

Kb = molal boiling point increase

Kf = molal freezing point constant

m = molal solution

For electrolyte solutions there is a van't Hoff factor = i

<h3>i = 1 + (n-1) α </h3>

n = number of ions from the electrolyte

α = degree of ionization, strong electrolyte α = 1, for non electrolytes i = 1

so the boiling point formula becomes:

[tex] \ rm \ Delta T_f = K_b \ times m \ times i [/ tex]

All solutions in the problem have the same solvent -> assuming water (The same [tex] \ rm K_b [/ tex]) so that what affects the value of [tex] \ rm \ Delta T_b [/ tex] is the value of i and m

Assuming the degree of electrolyte ionization α = 1, the magnitude i is determined by the number of ions produced by the electrolyte (n)

 a. 0.100 m Li₂SO₄

 Li₂SO₄ ---> 2Li ++ SO₄²⁻ → 3 ions

m x i = 0.1 x 3 = 0.3

b. 0.100 m KNO₂

KNO₂ ---> K⁺ + NO₂⁻ → 2 ions

m x i = 0.1 x 2 = 0.2

c. 0.200 m C₃H₈O₃

Non-electrolyte solution, i = 1

ΔTb = Kb .m (based only on concentration m)

m x i = 0.2 x 1 = 0.2 or m only = 0.2

d. 0.060 m Li₃PO₄

Li₃PO₄ ---> 3Li⁺ + PO₄ ³⁻ → 4 ions

m x i = 0.06 x 4 = 0.24

Li₃PO₄ has the highest number of m x i, so it has the highest [tex] \ rm \ Delta T_b [/ tex] and the highest boiling point.

<h3>Learn more </h3>

colligative properties

brainly.com/question/8567736

Raoult's law

brainly.com/question/10165688

The vapor pressure of benzene

brainly.com/question/11102916

The freezing point of a solution

brainly.com/question/8564755

brainly.com/question/4593922

brainly.com/question/1196173

You might be interested in
AuB4O7 name<br> Element i need help
coldgirl [10]
Can you ask your question more thoroughly?
7 0
3 years ago
What is the freezing point (°C) of a solution prepared by dissolving 11.3 g of Ca(NO3)2 (formula weight = 164 g/mol) in 115 g of
Citrus2011 [14]

Answer:

freezing point   (°C) of the solution =  - 3.34° C

Explanation:

From the given information:

The freezing point (°C) of a solution can be prepared by using the formula:

\Delta T = iK_fm

where;

i = vant Hoff factor

the vant Hoff factor is the totality of the number of ions in the solution

Since there are 1 calcium ion and 2 nitrate ions present in Ca(NO3)2, the vant Hoff factor = 3  

K_f = 1.86 °C/m

m = molality of the solution and it can be determined by using the formula

molality = \dfrac{mole \ of \ solute }{kg \ of \ solvent }

which can now be re-written as :

molality = \dfrac{mole \ of \ Ca(NO_3)_2}{kg \ of \  water}

molality = \dfrac{\dfrac{mass \ of \  \ Ca(NO_3)_2}{molar \  mass of \ Ca(NO_3)_2} }{kg \ of \  water}

molality = \dfrac{\dfrac{11.3 \ g }{164 \ g/mol} }{0.115 \ kg }

molality = 0.599 m

∴

The freezing point (°C) of a solution can be prepared by using the formula:

\Delta T = iK_fm

\Delta T =3 \times (1.86 \ ^0C/m) \times (0.599 \ m)

\Delta T =3.34^0 \ C

\Delta T = the freezing point of water - freezing point of the solution

3.34° C = 0° C -  freezing point of the solution

freezing point  (°C) of the solution =  0° C - 3.34° C

freezing point   (°C) of the solution =  - 3.34° C

3 0
3 years ago
Can you help me please
irina [24]

Answer:

Concentrated solutions

7 0
3 years ago
Please help!!!!!!!!!!!!!!!!
STALIN [3.7K]
1. Dmitri created groups of 3
2. John Newlands arranged the elements
3. Antoine Lavoisier divided them into catagories
4. Johann used patterns

hope this helped :) 
3 0
3 years ago
2. How many joules of heat are required to heat 237 g of lithium fluoride (specific heat = 1.56
malfutka [58]
The answer is 24,327.58 joules
8 0
3 years ago
Other questions:
  • As a form of energy, light has specific properties such as color and brightness. Some properties can only be seen with special t
    10·1 answer
  • What is the mass of Darmstadtium?​
    10·2 answers
  • DNA and protein that makes up chromosomes
    6·1 answer
  • What's the break up of rock caused by mechanical or chemical processes
    10·1 answer
  • When bonds between atoms are broken or formed, what is the outcome?
    9·2 answers
  • A 25.0 ml sample of aqueous sodium hydroxide has been used to titrate to the second equivalence point 22.30 ml of 0.253 m sulfur
    14·1 answer
  • Atoms and elements are examples of
    8·1 answer
  • Hi! I need some solar system facts!
    9·2 answers
  • Could someone try and solvethis?
    5·2 answers
  • How many molecules of SF6<br> are in 25.0 g SF6?<br><br> [ ? ]×10⁰²] molecules SF6
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!