1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
shutvik [7]
3 years ago
5

Choose the aqueous solution that has the highest boiling point. These are all solutions of nonvolatile solutes and you should as

sume ideal van't Hoff factors where applicable. Choose the aqueous solution that has the highest boiling point. These are all solutions of nonvolatile solutes and you should assume ideal van't Hoff factors where applicable. a. 0.100 m Li₂SO₄
b. 0.100 m KNO₂
c. 0.200 m C₃H₈O₃
d. 0.060 m Li₃PO₄e. They all have the same boiling point.
Chemistry
2 answers:
Anettt [7]3 years ago
6 0

Answer: 0.100 m Li_2SO_{4}

Explanation:

\Delta T_b=i\times k_b\times m

\Delta T_b =  Elevation in boiling point

i = Van'T Hoff factor  

k_f = boiling point constant

m = molality

1. For 0.100 m Li_2SO_{4}

Li_2SO_4\rightarrow 2Li^{+}+SO_4^{2-}

i= 3 as it is a electrolyte and dissociate to give 3 ions.

Thus concentration of ions =3\times 0.100=0.300

2. For 0.100 m KNO_{2}

KNO_2\rightarrow K^{+}+NO_2^{-}  

i= 2 as it is a electrolyte and dissociate to give 2 ions.

Thus concentration of ions =2\times 0.100=0.200

3. For 0.200 m C_3H_8O_3

i= 1 as it is a non electrolyte and do not dissociate to give ions.

4. For 0.060 m Li_3PO_4

Li_3PO_4\rightarrow 3Li^{+}+PO_4^{3-}  

i= 4 as it is a electrolyte and dissociate to give 4 ions.

Thus concentration of ions =4\times 0.060=0.24

Thus as concentration of ions is highest for Li_2SO_{4} and the boiling point will be highest.

Nuetrik [128]3 years ago
4 0

0.060 m Li₃PO₄ has the highest boiling point

<h3>Further explanation </h3>

Solution properties are the properties of a solution that don't depend on the type of solute but only on the concentration of the solute.

Solution properties of electrolyte solutions differ from non-electrolyte solutions because electrolyte solutions contain a greater number of particles because electrolytes break down into ions. So the Solution properties of electrolytes is greater than non-electrolytes.

The term is used in the Solution properties

  • 1. molal

that is, the number of moles of solute in 1 kg of solvent

\large {\boxed {\bold {m = mole. \frac {1000} {mass \: of \: solvent (in \: grams)}}}

  • 2. Boiling point and freezing point

Solutions from volatile substances have a higher boiling point and lower freezing points than the solvent

ΔTb = Tb solution - Tb solvent

ΔTb = boiling point elevation

\rm \Delta T_f = T_fsolvent-T_fsolution

\large {\boxed {\boxed {\bold {\Delta Tb \: = \: Kb.m}}}

\rm \Delta T_f = K_f \times m

Kb = molal boiling point increase

Kf = molal freezing point constant

m = molal solution

For electrolyte solutions there is a van't Hoff factor = i

<h3>i = 1 + (n-1) α </h3>

n = number of ions from the electrolyte

α = degree of ionization, strong electrolyte α = 1, for non electrolytes i = 1

so the boiling point formula becomes:

[tex] \ rm \ Delta T_f = K_b \ times m \ times i [/ tex]

All solutions in the problem have the same solvent -> assuming water (The same [tex] \ rm K_b [/ tex]) so that what affects the value of [tex] \ rm \ Delta T_b [/ tex] is the value of i and m

Assuming the degree of electrolyte ionization α = 1, the magnitude i is determined by the number of ions produced by the electrolyte (n)

 a. 0.100 m Li₂SO₄

 Li₂SO₄ ---> 2Li ++ SO₄²⁻ → 3 ions

m x i = 0.1 x 3 = 0.3

b. 0.100 m KNO₂

KNO₂ ---> K⁺ + NO₂⁻ → 2 ions

m x i = 0.1 x 2 = 0.2

c. 0.200 m C₃H₈O₃

Non-electrolyte solution, i = 1

ΔTb = Kb .m (based only on concentration m)

m x i = 0.2 x 1 = 0.2 or m only = 0.2

d. 0.060 m Li₃PO₄

Li₃PO₄ ---> 3Li⁺ + PO₄ ³⁻ → 4 ions

m x i = 0.06 x 4 = 0.24

Li₃PO₄ has the highest number of m x i, so it has the highest [tex] \ rm \ Delta T_b [/ tex] and the highest boiling point.

<h3>Learn more </h3>

colligative properties

brainly.com/question/8567736

Raoult's law

brainly.com/question/10165688

The vapor pressure of benzene

brainly.com/question/11102916

The freezing point of a solution

brainly.com/question/8564755

brainly.com/question/4593922

brainly.com/question/1196173

You might be interested in
5. How many atoms of hydrogen are in a molecule of acetic acid (HC2H202)?
Kazeer [188]

Answer:

in acetic acid ,there are 4 hydrogen atoms

Explanation:

C H 3 C O O H

3 0
3 years ago
Explain what happens to the light ray when above and below the line are both water
IceJOKER [234]

<>"Refraction is the bending of the path of a light wave as it passes from one material into another material. The refraction occurs at the boundary and is caused by a change in the speed of the light wave upon crossing the boundary. The tendency of a ray of light to bend one direction or another is dependent upon whether the light wave speeds up or slows down upon crossing the boundary. The speed of a light wave is dependent upon the optical density of the material through which it moves. For this reason, the direction that the path of a light wave bends depends on whether the light wave is traveling from a more dense (slow) medium to a less dense (fast) medium or from a less dense medium to a more dense medium. In this part of Lesson 1, we will investigate this topic of the direction of bending of a light wave.    

Predicting the Direction of Bending

Recall the Marching Soldiers analogy discussed earlier in this lesson. The analogy served as a model for understanding the boundary behavior of light waves. As discussed, the analogy is often illustrated in a Physics classroom by a student demonstration. In the demonstration, a line of students (representing a light wave) marches towards a masking tape (representing the boundary) and slows down upon crossing the boundary (representative of entering a new medium). The direction of the line of students changes upon crossing the boundary. The diagram below depicts this change in direction for a line of students who slow down upon crossing the boundary.

On the diagram, the direction of the students is represented by two arrows known as rays. The direction of the students as they approach the boundary is represented by an incident ray (drawn in blue). And the direction of the students after they cross the boundary is represented by a refracted ray (drawn in red). Since the students change direction (i.e., refract), the incident ray and the refracted ray do not point in the same direction. Also, note that a perpendicular line is drawn to the boundary at the point where the incident ray strikes the boundary (i.e., masking tape). A line drawn perpendicular to the boundary at the point of incidence is known as a normal line. Observe that the refracted ray lies closer to the normal line than the incident ray does. In such an instance as this, we would say that the path of the students has bent towards the normal. We can extend this analogy to light and conclude that:

Light Traveling from a Fast to a Slow Medium

If a ray of light passes across the boundary from a material in which it travels fast into a material in which travels slower, then the light ray will bend towards the normal line.

The above principle applies to light passing from a material in which it travels fast across a boundary and into a material in which it travels slowly. But what if light wave does the opposite? What if a light wave passes from a material in which it travels slowly across a boundary and into a material in which it travels fast? The answer to this question can be answered if we reconsider the Marching Soldier analogy. Now suppose that the each individual student in the train of students speeds up once they cross the masking tape. The first student to reach the boundary will speed up and pull ahead of the other students. When the second student reaches the boundary, he/she will also speed up and pull ahead of the other students who have not yet reached the boundary. This continues for each consecutive student, causing the line of students to now be traveling in a direction further from the normal. This is depicted in the diagram below.

"<>

4 0
3 years ago
Plastic is used to cover the copper wire in the power codes of appliances because plastic differs from copper in _________. 1. D
klio [65]

Answer:

Bro, its so obvious. Its electrical conductivity.

Explanation:

4 0
3 years ago
Read 2 more answers
What conditions will cause a redox reaction to be nonspontaneous?
kherson [118]
The answer is B for the apex answer
7 0
2 years ago
If someone is suffering from the problem of acidity after overeating, which of the following would you suggest as remedy ?
kolezko [41]

Answer:

nth

Explanation:

6 0
3 years ago
Other questions:
  • All but one is a method of passve transport in cells
    15·2 answers
  • How many moles of atoms are there in 27g of aluminium
    9·1 answer
  • Name the noble gas atom that has the same electron configuration as each ion in the compound rubidium oxide
    6·1 answer
  • What is the average atomic mass listed for nitrogen in the periodic table?
    15·1 answer
  • if you throw a heavy log into the fireplace, after it burns you are left with some ash. the ash has a mass much less then the ma
    13·1 answer
  • What element is not classified as a metal, nonmetal, or metalloid?​
    14·1 answer
  • A part of the periodic table is shown below:
    9·2 answers
  • How do I begin this problem? How do I set up the problem? What formula do I use?
    6·1 answer
  • Using the weather radar map shown here, infer at which lettered point the most likely tornado formation and damage would
    10·2 answers
  • PLEASE ANSWER I AM BEGGING
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!