Answer:
there is no d electron that can be promoted via the absorption of visible light
Explanation:
One of the properties of transition elements is the possession of incompletely filled d orbitals. This property accounts for their unique colours.
The colours of transition metal compounds stem from d-d transition of electrons due to the presence of vacant d orbitals of appropriate energy to which electrons could be promoted.
For elements whose atoms have a d10 configuration, such vacant orbitals does not exist hence their compounds are not colored.
Sometimes, the colour of transition metal compounds stem from ligand to metal charge transfer(LMCT) for instance in KMnO4.
The correct answer is a metal atom forms a cation, and a nonmetal atom forms an anion. This is because metals are less electronegative than nonmetals and will therefore give electrons to nonmetals. Atoms that give up electrons will have a positive charge therefore becoming a cation while atoms that accept electrons will have a negative charge therefore becoming an anion.
Ions that have the same charge can't be attracted to each other since it takes a positive and negative charge to cause attractive forces.
A less electronegative atom will transfer electrons to a more electronegative atom.
A metal (cation) can pull electrons from another metal (not an ion) but that does not form an attractive force between the two metals (You will learn more about this when you go over reduction potentials, redox reactions, and electrochemistry).
I hope this helps. Let me know if anything is unclear.
Answer:
moles = given mass/atomic mass
so H2O mass = 2 +16=18
so 12g of h2o= 12/16 = 3/4 moles
Answer:
The mass of the nucleus is almost the same as the atom because a majority of the mass of an atom is stored in the nucleus.
The volume of an atom is larger than the nucleus. The nucleus is a tiny, concentrated area inside of the atom. Atoms are mostly empty space inside.
Explanation: