To determine the standard heat of reaction, ΔHrxn°, let's apply the Hess' Law.
ΔHrxn° = ∑(ν×ΔHf° of products) - ∑(ν×ΔHf° of reactants)
where
ν si the stoichiometric coefficient of the substances in the reaction
ΔHf° is the standard heat of formation
The ΔHf° for the substances are the following:
CH₃OH(l) = -238.4 kJ/mol
CH₄(g) = -74.7 kJ/mol
O₂(g) = 0 kJ/mol
ΔHrxn° = (1 mol×-74.7 kJ/mol) - ∑(1 mol×-238.4 kJ/mol)
ΔHrxn° = +163.7 kJ
Answer:
65.2L
Explanation:
Using the general gas equation;
PV = nRT
Where;
P = pressure (atm)
V = volume (Litres)
n = number of moles (mol)
R = gas law constant (0.0821 Latm/molK)
T = temperature (Kelvin)
According to the information provided in this question,
P = 1.631 atm
V = ?
n = 4.3 moles
T = 28°C = 28 + 273 = 301K
Using PV = nRT
V = nRT/P
V = 4.3 × 0.0821 × 301 ÷ 1.631
V = 106.26 ÷ 1.631
V = 65.15
Volume of the gas = 65.2L
I think it was from los griegos but a long time a go because he was making and experiment with and apple and he notice that he couldn’t cut more so he name it atoms (sorry for my bad English I don’t speak English)
Exothermic reaction releases energy in the form of heat or light