Answer:
Due to the resistance of air, a drag force acts on a falling body (parachute) to slow down its motion. Without air resistance, or drag, objects would continue to increase speed until they hit the ground. The larger the object, the greater its air resistance. Parachutes use a large canopy to increase air resistance. Also, Once the parachute is opened, the air resistance overwhelms the downward force of gravity. The net force and the acceleration on the falling skydiver is upward. An upward net force on a downward falling object would cause that object to slow down. The skydiver thus slows down. Sorry if not helpful.
Answer:
true i think
Explanation:
The amplitude of a sound wave determines its loudness or volume. A larger amplitude means a louder sound, and a smaller amplitude means a softer sound. In Figure 10.2 sound C is louder than sound B. The vibration of a source sets the amplitude of a wave.
Answer:
The magnitude of gravitational force between two masses is
.
Explanation:
Given that,
Mass of first lead ball, 
Mass of the other lead ball, 
The center of a large ball is separated by 0.057 m from the center of a small ball, r = 0.057 m
We need to find the magnitude of the gravitational force between the masses. It is given by the formula of the gravitational force. It is given by :

So, the magnitude of gravitational force between two masses is
. Hence, this is the required solution.
Answer:
<h2>D</h2>
Explanation:
The momentum of an object can be found by using the formula
momentum = mass × velocity
From the question
mass = 2 kg
velocity/speed = 3 m/s
We have
momentum = 2 × 3 = 6
We have the final answer as
<h3>6 kg.m/s</h3>
Hope this helps you
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions here.
<span>a=Δω/Δt
</span><span>a=2π*Δf/Δt
</span><span>a=2π*(f2-f1)/Δt
</span>
<span>f1=f2-a*Δt/2π
</span><span>f2=800/60 rev/sec
</span><span>a=-42 rad/sec^2
</span><span>Δt=1.75sec
</span><span>so
f1=25 rev/sec
f1=1500 rev/min</span>