Answer:
13.51 nm
Explanation:
To solve this problem, we are going to use angle approximation that sin θ ≈ tan θ ≈ θ where our θ is in radians
y/L=tan θ ≈ θ
and ∆θ ≈∆y/L
Where ∆y= wavelength distance= 2.92 mm =0.00292m
L=screen distance= 2.40 m
=0.00292m/2.40m
=0.001217 rad
The grating spacing is d = (90000 lines/m)^−1
=1.11 × 10−5 m.
the small-angle
approx. Using difraction formula with m = 1 gives:
mλ = d sin θ ≈ dθ →
∆λ ≈ d∆θ = =1.11 × 10^-5 m×0.001217 rad
=0.000000001351m
= 13.51 nm
The atomic number is the number of protons in the nucleus of an atom. The number of protons define the identity of an element (i.e., an element with 6 protons is a carbon
So I believe it’s 6 hope this helps if not reply back
Answer:
option (b) 4900 N
Explanation:
m = 2000 kg, R = 6380 km = 6380 x 10^3 m, Me = 5.98 x 10^24 kg, h = R
F = G Me x m / (R + h)^2
F = G Me x m / 2R^2
F = 6.67 x 10^-11 x 5.98 x 10^24 x 2000 / (2 x 6380 x 10^3)^2
F = 4900 N
Potential energy can be calculated using the following rule:
potential energy = mgh where:
m is the mass = 85 kg
g is the acceleration due to gravity = 9.8 m/sec^2
h is the height = 4 km = 4000 meters
Substitute in the above equation to get the potential energy as follows:
Potential energy = 85*9.8*4000 = 3332000 joules
Answer:
If we’re talking about objects on the Earth, the gravitational potential energy is given by:
Explanation:
PEg=mgh
so the energy is proportional to the mass ( m ), but also to the strength of the gravitational field ( g ), and the height ( h ) to which the mass is lifted.