Answer:
a) I₁ = 11.2 Lux
, vertical direction
, b) I₂ = 1.44 Lux
Explanation:
a) A polarized is a system that absorbs light that is not polarized in the direction of its axis, therefore half of the non-polarized light must be absorbed
consequently the above the processed light has half of the incident intensity and the directional of the polarized
I₁ = I₀ / 2
I₁ = 22.4 / 2
I₁ = 11.2 Lux
is polarized in the vertical direction
b) The polarized light falls on a second polarizer, therefore it must comply with the law of Malus
I₂ = I₁ cos² θ
I₂ = 11.2 cos² 69
I₂ = 1.44 Lux
Kinetic energy: the energy of motion
Work: the change in kinetic energy
Power: the rate of work done
Explanation:
The kinetic energy of an object is the energy possessed by the object due to its motion. Mathematically, it is given by:

where
m is the mass of the object
v is its speed
The work done an object is the amount of energy transferred; according to the energy-work theorem, it is equal to the change in kinetic energy of an object:

where
is the final kinetic energy
is the initial kinetic energy
Finally, the power is the rate of work done per unit time. Mathematically, ti can be expressed as

where
W is the work done
t is the time elapsed
Learn more about kinetic energy, work and power:
brainly.com/question/6536722
brainly.com/question/6763771
brainly.com/question/6443626
brainly.com/question/7956557
#LearnwithBrainly
Answer:
This is an attempt to more clearly visualize the nature of single slit diffraction. The phenomenon of diffraction involves the spreading out of waves past openings which are on the order of the wavelength of the wave.
Explanation:
So n=c/v, n= index, c=speed of light and v= speed of light in diamond. 2.42=c/v so v=c/2.42, c≈<span>3x108 m/sec</span><span> so v=</span><span>1.24x108 m/sec</span>.
<span>Hope this helps.</span>
Answer:
The ball thrown downward
Explanation:
When the ball is thrown vertically, the acceleration of it is the gravity acceleration independent if it is thrown downward or upward. However, the acceleration is a vector, so, when the ball is thrown upward, the movement is against the gravity, so the acceleration is negative, and so, the velocity decreases during time; and when the ball is thrown downward, the movement goes to the gravity, so the acceleration is positive, so the velocity increase after time passes.