I’d say probably a forest
Nuclear energy is called the energy obtained by the transformation of atomic nuclei, so small and heavy clusters of particles inside the atom. Nuclear energy can be produced in two ways, by cleavage or synthesis of nuclei. Heavy nuclei of radioactive elements such as uranium or plutonium, can be split into two nuclei. By splitting are released from the nucleus of neutrons that collide with other nuclei causing them to split and subsequent emission of neutrons. This is called a chain reaction. The condition calls self-sustaining nuclear reaction is slowing down neutrons. For this purpose, a special substance, called moderator. The neutrons collide with the molecules of the moderator precipitate heating speed while the moderator. The resulting heat heats the water so that a couple who drives a turbine generating electricity. Another way of producing nuclear energy is nuclear fusion, in which nuclei combine to light elements. So far, fusion, however, failed to carry out so that it can be applied to the economy as a source of energy.
Boyle Law says “the pressure of fixed amount of ideal gas which is at constant temperature is
inversely proportional to its volume".<span>
P = 1/V
<span>Where, P is pressure of the ideal gas and V is volume of the ideal gas.</span>
<span>For two situations, this law can be added as;
P</span>₁V₁ = P₂V₂<span>
</span><span>14 lb/in² x V₁ = 70 lb/in² x 500 mL</span><span>
</span><span>V₁ =
2500 mL</span><span>
Hence, the needed volume of atmospheric air = 2500
mL
<span>Here, we made two </span>assumptions. They are,
1. The
atmospheric air acts as ideal gas.
2.
Temperature is a constant.
<span>We didn't convert the units to SI units since
converting volume and pressure are products of two numbers, they will cut off. </span></span></span>
Answer:
Answers in explanation.
Explanation:
30. A (A chemical changes changes the chemical properties)
31. C (rusting is an example of a chemical change
32. B (A reaction requires energy, so some energy will be expelled)
33. B (Color change is an example of a chemical change)
34. A (The law of the conservation of mass: Mass and Energy cannot be created nor destroyed)