Explanation:
F = ma is the formula of Newton's Second Law of Motion. Newton's Second Law of Motion is defined as Force is equal to the rate of change of momentum. For a constant mass, force equals mass times acceleration.
...
Explanation:
∆x=300 m×2
∆t=1.5 s
v=∆x/∆t → v=2×300/1.5 = 400 m/s
Answer:
(a)0.531m/s
(b)0.00169
Explanation:
We are given that
Mass of bullet, m=4.67 g=
1 kg =1000 g
Speed of bullet, v=357m/s
Mass of block 1,
Mass of block 2,
Velocity of block 1,
(a)
Let velocity of the second block after the bullet imbeds itself=v2
Using conservation of momentum
Initial momentum=Final momentum
Hence, the velocity of the second block after the bullet imbeds itself=0.531m/s
(b)Initial kinetic energy before collision
Final kinetic energy after collision
Now, he ratio of the total kinetic energy after the collision to that before the collision
=
=0.00169
Answer: Option (A) is the correct answer.
Explanation:
A corrective action is defined as the action with the help of which a person can avoid a difficulty or problem that he/she was facing earlier.
For example, when the chef checked the temperature of soup using thermometer then it was 120 but his operation's critical limit was 135.
So, to avoid this problem he heated the soup to 165 at 15 seconds following which he got the result as desired.
Therefore, reheating the soup was his corrective action.
Thus, we can conclude that reheating the soup was the corrective action.